Journal of Cancer Research and Therapeutics

ORIGINAL ARTICLE
Year
: 2021  |  Volume : 17  |  Issue : 2  |  Page : 463--470

Dosimetric impact of dwell time deviation constraint on inverse brachytherapy treatment planning and comparison with conventional optimization method for interstitial brachytherapy implants


Saurabh Roy1, V Subramani2, Kishore Singh3, Arun Kumar Rathi3 
1 Department of Radiotherapy, Lok Nayak Hospital, Delhi; Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India
2 Department of Radiotherapy, Dr. BRA IRCH, AIIMS, Delhi, India
3 Department of Radiotherapy, Lok Nayak Hospital, Delhi, India

Correspondence Address:
Saurabh Roy
Room No. 123, Department of Radiotherapy, Lok Nayak Hospital, Gate No. 2, Jawahar Lal Nehru Marg, Delhi - 110 002
India

Purpose: High-dose rate remote afterloading brachytherapy machine and advanced treatment planning system help in getting optimum dose to tumor and low dose to normal structures. Inverse planning simulated annealing (IPSA) optimization technique has a unique feature of dwell time deviation constraint (DTDC). In this study, six IPSA-based plans having different DTDC values with routinely practiced geometric plus graphical optimization (GO + GrO) have been compared using various dosimetric parameters. Materials and Methods: For this retrospective study, we have generated IPSA-optimized interstitial brachytherapy plans for ten cancer cervix patients. Routinely practiced GO + GrO-based plans were compared with six different IPSA plans having varying DTDC values from 0.0 to 1.0 using different dosimetric indices. Results: Conformity index and homogeneity index (HI) were higher in GO + GrO plans, compared to IPSA-optimized plans. However, HI of IPSA plans was increasing with increasing DTDC values. High-dose volumes were well controllable using DTDC parameter in IPSA-optimized plans. Dose to the rectum and bladder was smaller for IPSA-optimized plans than GO + GrO plans. Conclusions: One of the benefits of applying DTDC in IPSA-optimized plan is that it reduces high-dose volumes. Another advantage is the reduction in rectum and bladder dose.


How to cite this article:
Roy S, Subramani V, Singh K, Rathi AK. Dosimetric impact of dwell time deviation constraint on inverse brachytherapy treatment planning and comparison with conventional optimization method for interstitial brachytherapy implants.J Can Res Ther 2021;17:463-470


How to cite this URL:
Roy S, Subramani V, Singh K, Rathi AK. Dosimetric impact of dwell time deviation constraint on inverse brachytherapy treatment planning and comparison with conventional optimization method for interstitial brachytherapy implants. J Can Res Ther [serial online] 2021 [cited 2021 Oct 18 ];17:463-470
Available from: https://www.cancerjournal.net/article.asp?issn=0973-1482;year=2021;volume=17;issue=2;spage=463;epage=470;aulast=Roy;type=0