Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 

    Article Cited by others


Glucose deprivation-induced metabolic oxidative stress and cancer therapy

Simons Andrean L, Mattson David M, Dornfeld Ken, Spitz Douglas R

Year : 2009| Volume: 5| Issue : 9 | Page no: 2-6

   This article has been cited by
1 Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells may Sensitize Them to Extracellular Ascorbate
Mark Frederick McCarty,Francisco Contreras
Frontiers in Oncology. 2014; 4
[Pubmed]  [Google Scholar] [DOI]
2 Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death
I Ben-Sahra,B Dirat,K Laurent,A Puissant,P Auberger,A Budanov,J-F Tanti,F Bost
Cell Death and Differentiation. 2013; 20(4): 611
[Pubmed]  [Google Scholar] [DOI]
3 Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death
Roberta Palorini,Tiziana Simonetto,Claudia Cirulli,Ferdinando Chiaradonna
International Journal of Cell Biology. 2013; 2013: 1
[Pubmed]  [Google Scholar] [DOI]
4 Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death
Nicholas A Graham,Martik Tahmasian,Bitika Kohli,Evangelia Komisopoulou,Maggie Zhu,Igor Vivanco,Michael A Teitell,Hong Wu,Antoni Ribas,Roger S Lo,Ingo K Mellinghoff,Paul S Mischel,Thomas G Graeber
Molecular Systems Biology. 2012; 8
[Pubmed]  [Google Scholar] [DOI]
5 Normal and cancer cell metabolism: Lymphocytes and lymphoma
Altman, B.J., Dang, C.V.
FEBS Journal. 2012; 279(15): 2598-2609
[Pubmed]  [Google Scholar]
6 Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death
Graham, N.A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., Vivanco, I., Teitell, M.A., (...), Graeber, T.G.
Molecular Systems Biology. 2012; 8(art): 589
[Pubmed]  [Google Scholar]
7 Lack of p53 decreases basal oxidative stress levels in the brain through upregulation of thioredoxin-1, biliverdin reductase-A, manganese superoxide dismutase, and nuclear factor kappa-B
Barone, E., Cenini, G., Sultana, R., Di Domenico, F., Fiorini, A., Perluigi, M., Noel, T., (...), Butterfield, D.A.
Antioxidants and Redox Signaling. 2012; 16(12): 1407-1420
[Pubmed]  [Google Scholar]
8 Control of glycolytic flux by AMP-activated protein kinase in tumor cells adapted to low ph1
Mendoza, E.E., Pocceschi, M.G., Kong, X., Leeper, D.B., Caro, J., Limesand, K.H., Burd, R.
Translational Oncology. 2012; 5(3): 208-216
[Pubmed]  [Google Scholar]
9 2-deoxy D-glucose prevents cell surface expression of NKG2D ligands through inhibition of N-linked glycosylation
Andresen, L., Skovbakke, S.L., Persson, G., Hagemann-Jensen, M., Hansen, K.A., Jensen, H., Skov, S.
Journal of Immunology. 2012; 188(4): 1847-1855
[Pubmed]  [Google Scholar]
10 Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress
Kwai Wa Cheng, Roshan Agarwal, Shreya Mitra, Ju-Seog Lee, Mark Carey, Joe W. Gray, Gordon B. Mills
EMBO Molecular Medicine. 2012; : n/a
[HTML Full text]  [Google Scholar] [DOI]
11 Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia
Annamaria Rapisarda, Giovanni Melillo
Nature Reviews Clinical Oncology. 2012;
[HTML Full text]  [Google Scholar] [DOI]
12 In vivo space radiation-induced non-targeted responses: Late effects on molecular signaling in mitochondria
Jain, M.R., Li, M., Chen, W., Liu, T., de Toledo, S.M., Pandey, B.N., Li, H., (...), Azzam, E.I.
Current Molecular Pharmacology. 2011; 4(2): 106-114
[Pubmed]  [Google Scholar]
13 High-glycolytic cancers and their interplay with the bodyćs glucose demand and supply cycle
Mathews, E.H., Liebenberg, L., Pelzer, R.
Medical Hypotheses. 2011; 76(2): 157-165
[Pubmed]  [Google Scholar]
14 TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death
Maria Lucibello, Alessandra Gambacurta, Manuela Zonfrillo, Pasquale Pierimarchi, Annalucia Serafino, Guido Rasi, Anna Rubartelli, Enrico Garaci
Experimental Cell Research. 2011;
[HTML Full text]  [Google Scholar] [DOI]
15 D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate
S M El Sayed, R M Abou El-Magd, Y Shishido, S P Chung, T Sakai, H Watanabe, S Kagami, K Fukui
Cancer Gene Therapy. 2011;
[HTML Full text]  [Google Scholar] [DOI]
16 Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity enhances EGCG-induced apoptosis
In Sup Kil, Kyu Ho Jung, Woo Suk Nam, Jeen-Woo Park
Biochimie. 2011;
[HTML Full text]  [Google Scholar] [DOI]
17 2-Deoxyglucose sensitizes melanoma cells to TRAIL-induced apoptosis which is reduced by mannose
Qin, J.-Z., Xin, H., Nickoloff, B.J.
Biochemical and Biophysical Research Communications. 2010; 401(2): 293-299
[Pubmed]  [Google Scholar]
18 Functional glutathione peroxidase 3 polymorphisms associated with increased risk of Taiwanese patients with gastric cancer
Wang, J.-Y., Yang, I.-P., Wu, D.-C., Huang, S.-W., Wu, J.-Y., Juo, S.H.H.
Clinica Chimica Acta. 2010; 411(19-20): 1432-1436
[Pubmed]  [Google Scholar]
19 Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate
Zhang, H., Cao, D., Cui, W., Ji, M., Qian, X., Zhong, L.
Free Radical Biology and Medicine. 2010; 49(12): 2010-2018
[Pubmed]  [Google Scholar]
20 2-DG enhances chemosensitivity of breast cancer cells to adriamycin
Cheng, X., Liu, H., Fang, L., Su, F., Song, L.-L., Ma, L.-Y., Jiang, G.-J., (...), Jiang, Z.-W.
Chinese Pharmacological Bulletin. 2010; 26(10): 1371-1376
[Pubmed]  [Google Scholar]


Read this article