Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2021  |  Volume : 17  |  Issue : 2  |  Page : 393-400

Zinc oxide nanofluids: The influence of modality combinations on prostate cancer DU145 cells

1 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Chemistry, Faculty of Science; Department of Research Cell and Molecular Biology, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran

Correspondence Address:
Razieh Jalal
Azadi Square, Ferdowsi University of Mashhad, Mashhad, Razavi Khorasan Province
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcrt.JCRT_232_17

Rights and Permissions

Aim: The combination of phototherapy and chemotherapy (chemophototherapy), presents a promising multimodal method for comprehensive cancer treatment. The aim of this study is to investigate the influence of low doses of zinc oxide (ZnO) nanofluids and ultraviolet A (UVA) irradiation on the cytotoxicity and cellular uptake of doxorubicin (DOX) on human prostate cancer DU145 cells. Materials and Methods: ZnO nanoparticles were prepared by the solvothermal method and 10% bovine serum albumin was used as the dispersant. The cytotoxic effect of DOX alone and in combination with different concentrations of ZnO nanofluids (0.95-15.6 μg/ml) in the presence and absence of UVA irradiation on DU145 cells was evaluated by -(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. DOX residue inside and outside of DU145 cells was explored by fluorescence microscopy and UV-Vis absorption spectroscopy, respectively. The role of ZnO nanofluids and UVA irradiation in DOX-induced apoptosis and cell cycle arrest were evaluated by DAPI staining, comet assay, and flow cytometry. Results: The results revealed that low dose of ZnO nanofluids (0.95 μg/ml) accompanied with irradiation enhanced the cytotoxicity and intracellular delivery of DOX in DU145 cells. The percentage of chromatin fragmentation/condensation and DNA tail of DU145 cells treated simultaneously with DOX and ZnO nanofluids was increased after UVA irradiation, whereas no significant changes in cell cycle progression were observed. Conclusion: The results indicate that ZnO nanofluids in the presence of UVA irradiation could increase DOX efficiency in DU145 cells, suggesting such modality combinations as a promising approach in cancer treatment.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded355    
    Comments [Add]    

Recommend this journal