Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2020  |  Volume : 16  |  Issue : 3  |  Page : 612-618

Demineralization of tooth enamel following radiation therapy; An in vitro microstructure and microhardness analysis

1 Yenepoya Research Centre, Yenepoya (Deemed to be University), Indore, India
2 Imaging Beamline (BL-4), BARC Beamline Section, Technical Physics Division, Indus-2, RRCAT, Indore, India
3 Department of Radiotherapy, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
4 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre; Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
5 Depatment of Biomaterials & Research centre, Department of Oral pathology, Yenepoya Dental College, Yenepoya (Deemed to be University), Indore, India

Correspondence Address:
Riaz Abdulla
Deparment of Biomaterials & Research centre Professor, Department of Oral pathology, Yenepoya Dental College, Yenepoya (Deemed to be University)
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcrt.JCRT_8_19

Rights and Permissions

Objective: The objective of this study is to evaluate the effects of radiotherapy doses on mineral density and percentage mineral volume of human permanent tooth enamel. Materials and Methods: Synchrotron radiation Xray microcomputed tomography (SRμCT) and microhardness testing were carried out on 8 and 20 tooth samples, respectively. Enamel mineral density was derived from SRμCT technique using ImageJ software. Microhardness samples were subjected to Vickers indentations followed by calculation of microhardness and percentage mineral volume values using respective mathematical measures. Data were analyzed using paired t-test at a significance level of 5%. Qualitative analysis of the enamel microstructure was done with two-dimensional projection images and scanned electron micrographs using μCT and field emission scanning electron microscopy, respectively. Results: Vickers microhardness and SRμCT techniques showed a decrease in microhardness and an increase in mineral density, respectively, in postirradiated samples. These changes were related to mineral density variation and alteration of hydroxyapatite crystal lattice in enamel surface. Enamel microstructure showed key features such as microporosities and loss of smooth homogeneous surface. These indicate tribological loss and delamination of enamel which might lead to radiation caries. Conclusions: Tooth surface loss might be a major contributing factor for radiation caries in head-and-neck cancer patients prescribed to radiotherapy. Such direct effects of radiotherapy cause enamel abrasion, delamination, and damage to the dentinoenamel junction. Suitable measures should, therefore, be worked out to protect nontarget oral tissues such as teeth while delivering effective dosages to target regions.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded98    
    Comments [Add]    

Recommend this journal