Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2020  |  Volume : 16  |  Issue : 3  |  Page : 575-580

Volume changes during head-and-neck radiotherapy and its impact on the parotid dose – A single-institution observational study

Department of Radiotherapy, Apollo Cancer Institute, Chennai, Tamil Nadu, India

Correspondence Address:
Bhargavi Ilangovan
64 G, SR Dream Bungalow, Gowri Nagar, Mugalivakkam, Chennai - 600 125, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcrt.JCRT_589_19

Rights and Permissions

Aims: This study aims at assessing the volume changes that occur in the targets (gross tumor volume and planning target volume [PTV]) and the organs at risk in squamous cell carcinoma of the head and neck during radiotherapy and assessing the dose changes that occur as a result of them. Settings and Design: This was a prospective observational study in a tertiary care center after obtaining the appropriate scientific and ethics committee clearance. Subjects and Methods: Forty-five patients diagnosed with squamous cell carcinoma of the head and neck, who were treated with intensity-modulated radiotherapy in the time period from March 2018 to May 2019, were enrolled in the study. A planning computed tomography (CT) scan (CTplan) was done for all patients, followed by scans after 15 fractions (CT15) and after 25 fractions (CT25). The volume changes and the subsequent dose changes were assessed and recorded. Statistical Analysis Used: Data entry was done in MS Excel spreadsheet. The continuous variables were expressed as mean + standard deviation. The comparison of normally distributed continuous variables was done by paired t-test. Data analysis was done by SPSS (Statistical Package for the Social Sciences) version 16.0. P < 0.05 was considered statistically significant. A multivariate linear regression model was constructed to study the correlation between mean dose to the parotid glands and the other variables. All statistical modeling and analysis were done using SAS (Statistical Analysis Software) version 9.4. Results: Of the 45 patients, 25 were male and 20 were female. The majority of the patients had malignancies in the oral cavity (16) and hypopharynx (14). Most of them had Stage III/IV (AJCC v 8) disease (41). There were a 36% decrease in the PTV-high risk (PTV-HR) volume and a 6.05% decrease in the PTV-intermediate risk (PTV-IR) volume CT15. In CT25, the volume decrease in the PTV-HR and the PTV-IR was 47% and 9.06%, respectively. The parotid glands also underwent a reduction in their volume which has been quantified as 21.7% and 20.9% in the ipsilateral and contralateral parotids in CT15 and 36% and 33.6% in CT25, respectively. The D2 (dose received by 2% of the volume) and D98 (dose received by 98% of the volume) of the PTV-IR showed changes of +3.5% and –0.2% in CT15 and + 4.6% and –0.31% in CT25, respectively. The homogeneity index and conformity number of the PTV-IR changes by 0.03 and 0.08 in CT15 and by 0.04 and 0.12 in CT25, respectively. The mean dose to the ipsilateral parotid gland increased by 14% in CT15 and 19% in CT25. The mean dose to the contralateral parotid gland increased by 17% in CT15 and 25% in CT25. Conclusion: The dose to the parotid glands increases as a result of the changes that occur during the course of radiation. The changes are significant after 15 fractions of radiation. A replanning at this juncture might be considered to reduce the dose to the parotid glands.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded39    
    Comments [Add]    

Recommend this journal