Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 1  |  Page : 107-112

A3 adenosine receptor agonist induce G1 cell cycle arrest via Cyclin D and cyclin-dependent kinase 4 pathways in OVCAR-3 and Caov-4 cell lines


1 Medical Laboratory Research Center, Golestan University of Medical Sciences, Gorgan, Iran
2 Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences; Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences; Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
5 Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Mahmoud Aghaei
Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1482.199381

Rights and Permissions

Aim of the Study: The cell cycle, a vital process that involves in cells' growth and division, lies at the heart of cancer. It has been shown that IB-MECA, an A3 adenosine receptor agonist inhibits the proliferation of cancer cells by inducing cell cycle arrest in several tumors. In this study, we evaluated the role of IB-MECA inhibition in cell cycle progression in ovarian cancer cells. Materials and Methods: Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in Caov-4 and OVCAR-3. Analysis of cell cycle distribution was carried out by flow cytometry. To determine the mechanisms of IB-MECA-mediated induction of cell cycle arrest, the expression of cell cycle regulatory proteins Cyclin D1 and cyclin-dependent kinase 4 (CDK4) was evaluated. Results: Our results showed that IB-MECA significantly reduced cell viability in a dose-dependent manner. Moreover, our results indicated that a low concentration of IB-MECA induced G1 cell cycle arrest. Reduction of Cyclin D1 and CDK4 protein levels was also observed after treating cancer cells with IB-MECA. Conclusion: This study demonstrated that IB-MECA induces G1 phase cell cycle arrest through Cyclin D1/CDK4-mediated pathway in ovarian cancer cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2995    
    Printed59    
    Emailed0    
    PDF Downloaded154    
    Comments [Add]    

Recommend this journal