Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
Year : 2013  |  Volume : 9  |  Issue : 3  |  Page : 348-350

Fractionated beam radiotherapy is a special case of continuous beam radiotherapy when irradiation time is small

1 Department of Radiotherapy, Institute of Post Graduate Education and Research (IPGMER), Kolkata, West Bengal, India
2 Department of Radiotherapy, Bankura Sammilani Medical College, Bankura, West Bengal, India
3 Department of Radiotherapy, R. G. Kar Medical College and Hospital, Kolkata, West Bengal, India
4 Department of Anatomy, Calcutta National Medical College, Kolkata, West Bengal, India
5 Department of Anatomy, Medical College, Kolkata, West Bengal, India

Date of Web Publication8-Oct-2013

Correspondence Address:
Jayanta Biswas
ARITRI Apartment, 155, R. N. Guha Road, Kolkata, West Bengal
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1482.119300

Rights and Permissions
 > Abstract 

Fractionated beam radiotherapy, in other terms, external beam radiotherapy (EBRT) and continuous beam radiotherapy or Brachytherapy are two modes of radiotherapy techniques. Although in many ways, they appear to be different, radiobiologically, with the help of mathematics, it can be proved that the biological effective dose (BED) of EBRT is similar to BED of Brachytherapy, when irradiation time is small. Here an attempt is made to correlate these two predominant modes of radiotherapy techniques.

Keywords: Continuous radiotherapy, fractionated radiotherapy, irradiation time

How to cite this article:
Biswas J, Rajguru TK, Choudhury KB, Dutta S, Sharma S, Sarkar A. Fractionated beam radiotherapy is a special case of continuous beam radiotherapy when irradiation time is small. J Can Res Ther 2013;9:348-50

How to cite this URL:
Biswas J, Rajguru TK, Choudhury KB, Dutta S, Sharma S, Sarkar A. Fractionated beam radiotherapy is a special case of continuous beam radiotherapy when irradiation time is small. J Can Res Ther [serial online] 2013 [cited 2021 Sep 16];9:348-50. Available from: https://www.cancerjournal.net/text.asp?2013/9/3/348/119300

 > Introduction Top

The main effects of radiation on cell survival are lethal, sublethal, and potentially lethal damages on chromosomes, modulated by 5 "R" - repair, repopulation, reoxygenation, reassortment, and radiosensitization. [1],[2] However, of the 5 R's of radiotherapy that exist, it has emerged from clinical studies that repopulation is one of the most significant factors that can provide insight into the lack of efficacy of radiation treatment. Kirkpatrick and Marks [3] stated that simple radiobiologic models that fail to incorporate the heterogeneity of radiosensitivity and or tumor cell repopulation will not adequately describe clinical outcomes. In addition, Kim and Tannock [4] proposed that during chemotherapy or radiation treatment repopulation of cancer cells often has a dominant effect on treatment outcome. The kinetics of repopulation offer insight into the underlying mechanisms of tumor cell death and re-growth, and as such, these models may be clinically useful in predicting response to therapy. [5]

The hypothetical cell survival curves for describing the mechanisms behind lethality in response to radiation have been explained by number of bio-mathematical models, like "Multi Target - Single Hit", Linear Quadratic (LQ), Linear Quadratic-Linear (LQL), and quadratic models.

 > Discussion Top

The ultimate effect of radiation culminates in cell death. The fundamentals of radiobiology are described in terms of time-dose relationships. The repair and cell death following radiation exposure are time and dose-rate dependent. Brenner et al. explained that the quantitative predictions of dose/fractionation dependencies in radiotherapy is the mechanistically based LQ model. [6] LQ model was originally proposed by Keller and Rossi as a result of microdosimetry of radiation-induced cellular damages. [7] LQ formalism describes the fractionation and dose-protraction effects through a particular functional form, the generalized time factor, G. [8],[9] The LQ formalism is now almost universally used for calculating radiotherapeutic isoeffect doses for different fractionation/protraction schemes. [10],[11] This model considers the effect of both irreparable damage and repairable damage susceptible to misrepair, which ultimately leads to mitotic cell death.

The biological effect (E) per fraction (n) of fractional dose (D) can be expressed as:

En = (αD + βD 2 )

The biologically effective dose is an approximate quantity by which different radiotherapy fractionation regimens may be intercompared. For instance, for an external beam radiotherapy (EBRT) regimen employing n equal fractions of conventional size the BED will be:

where n = number of fractions, D = dose/fraction, and nD = total dose.

This formulation assumes that full repair occurs between fractions so that the biological effect of each fraction is the same. Many extensions to the LQ and BED formulations have been developed to account for temporal phenomena such as sub lethal repair and repopulation, which can occur during lengthy fractionated regimens.

 > The Precondition Top

The precondition here is that the duration of fractionated beam radiotherapy should be less than one and half hour and for continuous beam radiotherapy it should be more than one and half hour. This is because, as repair half life is 0.5-2 hours, whenever duration of treatment is more than one and half hour or 90 minutes, repair of sub lethal damage goes on simultaneously with actual cell kill.

 > Mathematical Derivation Top

At first, the BED also known as extrapolated response dose (ERD) of continuous beam therapy is calculated. According to LQ model, the repair of sub lethal damage is supposed to be exponential. e -μt is the amount of damage existing after time t and therefore, the amount of repair after time t is equal to (1- e -μt ) (where, μ = repair constant).

From the LQ model, relative effectiveness,

where A type damage signifies linear component damage and B type damage is quadratic component damage.

Calculation for A type of damage is a bit straightforward, that is, αD = αRT, where D = Dose, R = dose rate, α = coefficient of linear damage, and T = total time. When explaining the B type damage, the probability of hitting one target of a cell by a single hit is PD.

But, as there are two targets in a cell and as both are to be hit and by separate radiation events, the probability of hitting one target among two targets will be double, 2PD = 2PRdt, where dt is a small time and R = dose rate.

Therefore, probability of damage existing after time

For getting the total probability of damage existing after entire time t, integrating the equation 2

Probability of the other target being damaged after additional time dt would be

For getting total probability of both the targets being damaged in time T, integrating the left hand side of eq (3),


This is the equation for calculating BED (or, ERD) of continuous beam radiotherapy where duration of treatment is more than 90 minutes or one and half hour.

When T is small, μT is also small (less than 90 minutes duration of radiotherapy), that is, μT ≤ 1;

This is the equation of RE of fractionated beam radiotherapy. Hence, mathematically, it can be proved that fractionated beam radiotherapy is a special case of continuous beam radiotherapy.

 > Conclusion Top

Radiobiologically, when irradiation time is short, fractionated beam radiotherapy behaves like continuous beam radiotherapy.

 > References Top

1.Withers HR. The four r's of radiotherapy. Adv Radiat Biol 1975;5:241-7.  Back to cited text no. 1
2.Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol 1989;56:1045-8.  Back to cited text no. 2
3.Kirkpatrick JP, Marks LB. Modelling killing and repopulation kinetics of subclinical cancer: Direct calculations from clinical data. Int J Radiat Oncol Biol Phys 2004;58:641-54.  Back to cited text no. 3
4.Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: An important cause of treatment failure. Nat Rev Cancer 2005;5:516-25.  Back to cited text no. 4
5.Fowler JF. Biological factors influencing optimum fractionation in radiotherapy. Acta Oncol 2001;40:712-7.  Back to cited text no. 5
6.Brenner DJ, Hlatky LR, Hahnfeldt PJ, Huang Y, Sachs RK. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res 1998;150:83-91.  Back to cited text no. 6
7.Ross GM. Induction of cell death by radiotherapy. Endocr Relat Cancer 1999;6:41-4.  Back to cited text no. 7
8.Lea DE. Actions of Radiations on Living Cells. London: Cambridge University Press; 1946.  Back to cited text no. 8
9.Lea DE, Catcheside DG. The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J Genet 1942;44:216-45.  Back to cited text no. 9
10.Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 2008;18:234-9.  Back to cited text no. 10
11.Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 1982;8:1981-97.  Back to cited text no. 11
12.Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985;58:515-28.  Back to cited text no. 12


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  >Abstract>Introduction>Discussion>The Precondition>Mathematical Der...>Conclusion
  In this article

 Article Access Statistics
    PDF Downloaded114    
    Comments [Add]    

Recommend this journal