Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2012  |  Volume : 8  |  Issue : 3  |  Page : 394-398

The effect of rib and lung heterogeneities on the computed dose to lung in Ir-192 High-Dose-Rate breast brachytherapy: Monte Carlo versus a treatment planning system

1 Department of Nuclear Engineering and Physics, Amir Kabir University of Technology, Tehran, Iran
2 Department of Radiotherapy- Oncology, Imam Khomeini Hospital, Cancer Institute, Tehran, Iran
3 Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran

Correspondence Address:
Seyed Ali Vaezzadeh
Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1482.103519

Rights and Permissions

Aims: This study investigates to what extent the dose received by lungs from a commercially available treatment planning system, Ir-192 high-dose-rate (HDR), in breast brachytherapy, is accurate, with the emphasis on tissue heterogeneities, and taking into account the presence of ribs, in dose delivery to the lung. Materials and Methods: A computed tomography (CT) scan of a breast was acquired and transferred to the 3-D treatment planning system and was also used to construct a patient-equivalent phantom. An implant involving 13 plastic catheters and 383 programmed source dwell positions were simulated, using the Monte Carlo N-Particle eXtended (MCNPX) code. The Monte Carlo calculations were compared with the corresponding commercial treatment planning system (TPS) in the form of percentage isodose and cumulative dose-volume histogram (DVH) in the breast, lungs, and ribs. Results: The comparison of the Monte Carlo results and the TPS calculations showed that a percentage of isodose greater than 75% in the breast, which was located rather close to the implant or away from the breast curvature surface and lung boundary, were in good agreement. TPS calculations overestimated the dose to the lung for lower isodose contours that were lying near the breast surface and the boundary of breast and lung and were relatively away from the implant. Conclusions: Taking into account the ribs and entering the actual data for breasts, ribs, and lungs, revealed an average overestimation of the dose by a factor of 8% in the lung for TPS calculations. Therefore, the accuracy of the TPS results may be limited to regions near the implants where the treatment is planned, and is a more conservative approach for regions at boundaries with curvatures or tissues with a different material than that in the breast.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded154    
    Comments [Add]    
    Cited by others 1    

Recommend this journal