Journal of Cancer Research and Therapeutics Close
 

Figure 2: microRNA-498 inhibits cell proliferation in non-small cell lung cancer cell lines in vitro. (a) Total levels of microRNA-498 in A549 cells transfected with the synthetic mimics of microRNA-498 (left panel), and H661 cells transfected with inhibitor of microRNA-498 (right panel). Quantitative reverse transcription polymerase chain reaction was carried out to detect the expression of microRNA-498. U6 RNA was used as an internal control. Cell counting method (b), cell counting kit 8 (c), and crystal violate staining method (d) were performed to access cell growth rates of the cell lines described in (a) over a 4-day period. Data are expressed as the mean standard deviation of the experiments performed in triplicate. *P < 0.05, **P < 0.01. The results showed that forced expression of microRNA-498 suppressed cell proliferation, while inhibition of microRNA-498 had the opposite effect

Figure 2: microRNA-498 inhibits cell proliferation in non-small cell lung cancer cell lines <i>in vitro</i>. (a) Total levels of microRNA-498 in A549 cells transfected with the synthetic mimics of microRNA-498 (left panel), and H661 cells transfected with inhibitor of microRNA-498 (right panel). Quantitative reverse transcription polymerase chain reaction was carried out to detect the expression of microRNA-498. U6 RNA was used as an internal control. Cell counting method (b), cell counting kit 8 (c), and crystal violate staining method (d) were performed to access cell growth rates of the cell lines described in (a) over a 4-day period. Data are expressed as the mean  standard deviation of the experiments performed in triplicate. *<i>P</i> < 0.05, **<i>P</i> < 0.01. The results showed that forced expression of microRNA-498 suppressed cell proliferation, while inhibition of microRNA-498 had the opposite effect