Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
 
ORIGINAL ARTICLE
Ahead of Print

Upregulation of sulfatase-1 decreases metastatic potential of SKOV3 human ovarian cancer cells in vitro and in vivo


1 Department of Pathophysiology and Obstetrics and Gynaecology, Dalian Medical University, Liaoning Province, Dalian, China
2 Department of Pathology, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
3 Department of Nephrology, Muhimbili University of Health and Allied Sciences, Tanzania, Ghana
4 Department of Obstetrics and Gynaecology, Tamale Teaching Hospital, Tamale, Ghana
5 Department of Anaesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China

Correspondence Address:
Salma Abdi Mahmoud,
Department of Pathophysiology and Obstetrics and Gynaecology, Dalian Medical University, Liaoning Province, Dalian, Liaoning 116044
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcrt.JCRT_194_17

Aim: Sulfatase-1 (SULF-1) is one of the genes associated with the inhibition of several signaling pathways by desulfating HSPG in cancer cells. The aim of this study is to investigate the effect of SULF-1 upregulation on SKOV3 ovarian cancer cell line and its influence on cell proliferation, migration, invasion in vitro, and lymph node metastasis in 615 inbred mice in vivo. Materials and Methods: In in vitro study, we upregulated SULF-1 in SKOV3 cells using SULF-1 expression plasmid. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were used to measure SULF-1 expression levels after stable upregulation. CCK-8, flow cytometry, Boyden Transwell-chamber, and scratch-wound healing assay were performed to explore the effect of SULF-1 on the proliferation, migration, and invasion. In in vivo study, immunohistochemistry and eosin stain (H and E) were used to evaluate the expression level of SULF-1 gene and to measure the lymph node metastatic rate of mice inoculated with SULF-1-SKOV3-expressed plasmid, SKOV3, and Nc-SKOV3 cells. Results: qRT-PCR and western blot assay confirmed that SULF-1 was upregulated both in mRNA and protein levels. Following SULF-1 stable upregulation, the cell proliferation, migration, and invasion were significantly reduced in the SULF-1 upregulated cells (SULF-1-SKOV3) compared with the nontransfected (SKOV3) and the nonspecific sequence transfected cells (Nc-SKOV3). IHC results showed that SULF-1 was highly expressed after stably upregulation in SKOV3 cells, and H and E stain confirmed that the mice inoculated with SULF-1-SKOV3 cells decreased lymph node metastatic rate compared to the two control groups. Conclusions: Our findings showed that overexpression of SULF-1 in SKOV3 results in a decrease in ovarian cancer cell proliferation, migration, and invasion in vitro and decreased lymph node metastasis in vivo. This finding could have a potential therapeutic window in the management of ovarian cancer.


Print this article
Search
 Back
 
  Search Pubmed for
 
    -  Mahmoud SA
    -  Mohammed MI
    -  Mahmoud MA
    -  Munkaila A
    -  Yabasin IB
 Citation Manager
 Article Access Statistics
 Reader Comments
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed466    
    PDF Downloaded21    

Recommend this journal