Nueclear Web Banner
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
 
ORIGINAL ARTICLE
Ahead of Print

Evaluation of the effect of hesperidin on vascular endothelial growth factor gene expression in rat skin animal models following cobalt-60 gamma irradiation


1 Department of Radiology and Radiobiology, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran
2 Department of Radiotherapy, Physics Unit, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
3 Laboratory Sciences Research Center, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz, Iran

Correspondence Address:
Akbar Abbaszadeh,
Department of Radiology and Radiobiology, Faculty of Paramedicine, Shiraz University of Medical Sciences, Shiraz
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None

Introduction: Skin is highly prone to radiation damage. Radiation burn is defined as damage to the skin or other biological tissues induced by radiofrequency or ionizing radiation. Vascular endothelial growth factor (VEGF) is a heparin-binded pro-angiogenic factor. Flavonoids belong to a family of polyphenol chemical compounds that are frequently present in fruits and vegetables. Hesperidin is an agent belonging to the flavonoid family. The aim of this study is to investigate whether hesperidin can affect the VEGF gene expression in rat skin following gamma irradiation or not. Materials and Methods: A total number of 36 male Sprague-Dawley rats were divided into three groups. First group: radiation group (n = 12), second group: radiation + hesperidin-treated group (n = 12), and third group: untreated control group (n = 12). The hesperidin administration dose was 100 mg/kg body weight. The rats received a 22 Gy single dose at a dose rate of about 0.3 Gy/min using a cobalt-60 external beam radiotherapy unit. The animals were euthanized 24 h postirradiation. VEGF gene expression data were analyzed using the equation 2ΔΔCT, where ΔΔCT = (Threshold cycle [CT], of target gene – CT of housekeeping gene)treated group– (CT of target gene – CT of housekeeping gene)untreated control group. Glyceraldehyde-3-phosphate dehydrogenase gene was used as a housekeeping gene. Results: VEGF gene in the radiation + hesperidin group overexpressed 25-fold relative to the control group. In addition, VEGF gene in the radiation group underexpressed 0.15-fold relative to the control group. When the three groups were compared relative to each other using the Kruskal–Wallis test, P < 0.001 was obtained. Based on the Mann–Whitney U-test, when all groups were compared to each in a binary model, P = 0.001 was achieved. These tests all showed statistically significant changes in VEGF gene expression. Conclusions: We can conclude that hesperidin is a potent angiogenic factor. Hesperidin as a radioprotector can initiate angiogenesis by VEGF gene induction. It may stimulate epithelialization, collagen deposition, and enhanced cellular proliferation. These changes can together accelerate wound healing, in particular, radiation-induced skin damage.


Print this article
Search
 Back
 
  Search Pubmed for
 
    -  Haddadi G
    -  Abbaszadeh A
    -  Mosleh-Shirazi MA
    -  Okhovat MA
    -  Salajeghe A
    -  Ghorbani Z
 Citation Manager
 Article Access Statistics
 Reader Comments
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed221    
    PDF Downloaded18    

Recommend this journal