Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 2  |  Page : 415-419

Endoscopic ultrasonography-guided poly (lactic acid-co-glycolic acid)-poly (ethylene glycol)-poly (lactic acid-co-glycolic acid) thermogel tunnel creation for natural orifice transluminal endoscopic surgery in porcine model


1 Department of Gastroenterology, 307 Hospital of PLA; Department of Internal Medicine, Clinic of August First Film Studio, Beijing, China
2 Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory; Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, China
3 Department of Gastroenterology, The People's Hospital of Wuhai, Wuhai, China
4 Department of Internal Medicine, Clinic of August First Film Studio, Beijing, China
5 Department of Gastroenterology, 307 Hospital of PLA, Beijing, China

Correspondence Address:
Prof. Yan Liu
Department of Gastroenterology, 307 Hospital of PLA, No. 8 East Street, Beijing 100071
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcrt.JCRT_400_18

Rights and Permissions

Background: Natural orifice transluminal endoscopic surgery (NOTES) is a minimal invasive treatment. However, tissue dissection under endoscopy is still challenging due to the flexibility of endoscopy body and there is still no effective method for establishing a tunnel towards the targeted area. We previously showed that a new kind of thermogel could be submucosallly injected and served as a cushion for endoscopic dissection. Thus, in this study we investigated the feasibility and safety of tunnel creation using poly (lactic acid-co-glycolic acid)-poly (ethylene glycol)-poly (lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel for NOTES in a porcine model. Methods: We prepared an injectable thermogel composed of PLGA-PEG-PLGA triblock copolymers which exhibited a low-viscous sol at room temperature and spontaneously transformed into a no-flowing gel at body temperature. This thermogel was used in NOTES in pigs. The success rate and adverse events were observed. Results: The PLGA-PEG-PLGA thermogels were successfully injected to the targeted areas under the guide of endoscopic ultrasonography and the tunnels were created by sucking the gel during NOTES as the endoscopy went forwards in all the three animals. The necropsy of the pigs showed no evidence of iatrogenic injury. No serious bleeding and perforation was observed. The results demonstrated that thermogel injection and tunnel creation by suction during NOTES were feasible, which simplified the procedure of tissue dissection and developed a new method of identifying the targeted area for surgical interventions without causing severe tissue damage. Conclusion: The application of thermogel for tunnel creation in NOTES could optimize current procedures and may have a promising prospect in clinical application.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed84    
    Printed2    
    Emailed0    
    PDF Downloaded2    
    Comments [Add]    

Recommend this journal