Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 1  |  Page : 1-8

Sequential simulation computed tomography allows assessment of internal rectal movements during preoperative chemoradiotherapy in rectal cancer


1 Department of Radiation Oncology, Guro Hospital, Korea University College of Medicine, Ansan, Korea
2 Department of Radiation Oncology, Ansan Hospital, Korea University College of Medicine, Ansan, Korea
3 Department of Radiation Oncology, Anam Hospital, Korea University College of Medicine, Seoul, Korea

Correspondence Address:
Dr. Won Sup Yoon
Department of Radiation Oncology, Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-Ro, Danwon-Gu, Ansan, GYG, 15355
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcrt.JCRT_227_17

Rights and Permissions

Purposes: The purpose of this study was to assess the internal rectal movement and to determine the factors related to extensive internal rectal movement using sequential simulation computed tomography (CT) images. Materials and Methods: From 2010 to 2015, 96 patients receiving long-course preoperative chemoradiotherapy were included in our retrospective study. The initial simulation CT (Isim-CT) and follow-up simulation CT (Fsim-CT) for a boost were registered according to the isocenters and bony structure. The rectums on Isim-CT and Fsim-CT were compared on four different axial planes as follows: (1) lower pubis symphysis (AXVERYLOW), (2) upper pubis symphysis (AXLOW), (3) superior rectum (AXHIGH), and (4) middle of AXLOW and AXHIGH (AXMID). The involved rectum in the planning target volume was evaluated. The maximal radial distances (MRD), the necessary radius from the end of Isim-CT rectum to cover entire Fsim-CT rectum, and the common area rate (CAR) of the rectum (CAR, (Isim-CT∩Fsim-CT)/(Isim-CT)) were measured. Linear regression tests for the MRDs and logistic regression tests for the CARs were conducted. Results: The mean ± standard deviation (mm) of MRDs and CAR <80% for AXVERYLOW, AXLOW, AXMID, and AXHIGH were 2.3 ± 2.5 and 8.9%, 3.0 ± 3.7 and 17.4%, 4.0 ± 5.2 and 27.1%, and 4.1 ± 5.2 and 25%, respectively. For MRDs and CARs, a higher axial level (AXVERYLOW/AXMID-HIGH, P = 0.018 and P = 0.034, respectively), larger bladder volume (P = 0.054 and P = 0.017, respectively), smaller bowel gas extent (small/marked, P = 0.014 and P = 0.001, respectively), and increased bowel gas change (decrease/increase, both P < 0.001) in rectum were associated with extensive internal rectal movement in multivariate analyses. Conclusions: As a result of following internal rectal movement through sequential simulation CT, the rectum above the pubis symphysis needs a larger margin, and bladder volume and bowel gas should be closely observed.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed226    
    Printed13    
    Emailed0    
    PDF Downloaded22    
    Comments [Add]    

Recommend this journal