Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 15  |  Issue : 1  |  Page : 157-163

Myricetin ameliorates cytokine-induced migration and invasion of cholangiocarcinoma cells via suppression of STAT3 pathway


1 Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
2 Department of Pharmacology, Faculty of Medicine, Khon Kaen University; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand

Correspondence Address:
Dr. Laddawan Senggunprai
Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002
Thailand
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcrt.JCRT_287_17

Rights and Permissions

Aim of Study: Cholangiocarcinoma (CCA) is an aggressive cancer with considerable metastatic potential. Various cytokines secreted by tumor cells or cells in the tumor environment can promote the metastasis of CCA. The aim of the present study was to investigate the effect of myricetin on the inhibition of cytokine-induced migration and invasion and the associated cellular mechanisms in human CCA cells. Materials and Methods: CCA KKU-100 cells were treated with a pro-inflammatory cytokine mixture consisting of interleukin-6, interferon-γ, and tumor necrosis factor-α. The migratory and invasive ability of KKU-100 cells were determined using a wound-healing assay and transwell invasion assay. The effect of myricetin on cytokine-induced STAT3 activation in CCA cells was determined using Western blot analysis. The real-time polymerase chain reaction was performed to determine messenger RNA expression. Results: Myricetin significantly inhibited cytokine-induced migration and invasion of KKU-100 cells. Detailed molecular analyses revealed that myricetin suppressed the activation of the STAT3 pathway, evidently by a decrease of the active phospho-STAT3 protein expression after myricetin treatment. The cytokine-mediated upregulation of metastasis- and inflammatory-associated genes, which are downstream genes of STAT3 including the intercellular adhesion molecule-1, matrix metalloproteinase-9, inducible nitric oxide synthase, and cyclo-oxygenase 2 (COX-2), were also significantly abolished by myricetin treatment. Moreover, the anti-migratory and anti-invasive activities of a widely prescribed COX inhibitor, indomethacin, were also revealed. Conclusion: This finding reveals the anti-metastatic effect of myricetin against CCA cells which is mediated partly through suppression of the STAT3 pathway. This compound could be potentially useful as a therapeutic agent against CCA.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1035    
    Printed33    
    Emailed0    
    PDF Downloaded60    
    Comments [Add]    

Recommend this journal