Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 7  |  Page : 1525-1534

Expression profile analysis identifies a two-gene signature for prediction of head and neck squamous cell carcinoma patient survival


1 Department of Gerontology, The Second Hosipital of Shandong University, Jinan, PR China
2 Department of Surgical Oncology, Taian City Central Hospital, Tai'an, PR China
3 Department of Radiology, Affiliated Hospital of Shandong Academy of Traditional Chinese Medicine, Jinan, PR China
4 Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
5 Department of Renal Cancer and Melanoma, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, PR China
6 Department of Radiotherapy, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China

Correspondence Address:
Chengtao Sun
324 Jingwu Weiqi Road, Jinan, Shandong 250021
China
Junqing Han
324 Jingwu Weiqi Road, Jinan, Shandong 250021
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcrt.JCRT_557_18

Rights and Permissions

Aim: The aim of this study is to identify a gene prognostic signature for the head-and-neck squamous cell carcinoma (HNSCC). HNSCC is one of the most common malignancies worldwide; however, the molecular mechanisms underlying the malignancy are unclear. Materials and Methods: We analyzed the gene expression profiles of GSE2379, GSE53819, and GSE59102 derived from the gene expression omnibus, and the cancer genome atlas (TCGA) HNSC databases. The R software was used to identify the differentially expressed genes (DEGs) between HNSCC tissues and normal controls. Gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, protein-protein interactions network, and survival analyses of common DEGs were also performed. Results: A total of 52 upregulated and 31 downregulated DEGs were identified. Functional analyses demonstrated that these DEGs were mainly enriched in extracellular matrix-receptor interaction, focal adhesion, tyrosine metabolism, and cytokine-cytokine receptor interaction. According to the survival analyses, PLAU and SERPINE1 could predict the overall survival of HNSCC patients from the TCGA cohort. Multivariable Cox regression analyses showed that the PLAU and SERPINE1 were independent prognostic factors for HNSCC patients. The prediction power of this two-gene signature was evaluated through receiver operating characteristic curve analysis and achieved a better prognostic value than PLAU (area under curve 0.613 [95% confidence interval 0.569–0.656] vs. 0.577 [0.533–0.621]; P = 0.008) or SERPINE1 (0.613 [0.569–0.656] vs. 0.586 [0.541–0.629]; P = 0.043) when considered alone. Conclusions: The study has identified a set of novel genes and pathways that play significant roles in the carcinogenesis and progression of HNSCC. This two-gene signature may prove to be a useful therapeutic target for HNSCC.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed680    
    Printed12    
    Emailed0    
    PDF Downloaded28    
    Comments [Add]    

Recommend this journal