Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 14  |  Issue : 2  |  Page : 351-356

Underdosing of the maxillary sinus for small fields used in newer radiotherapy techniques: Comparison of thermoluminescent dosimeter and Monte Carlo data


1 Department of Radiotherapy, King George's Medical University, Lucknow, India
2 Radiological Physics and Advisory Division, Bhabha Atomic Research Center, CTCRS, Mumbai, Maharashtra, India
3 Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
4 Department of Radiotherapy, U.P. Rural Institute of Medical Sciences and Research, Etawah, Uttar Pradesh, India

Correspondence Address:
Navin Singh
Department of Radiotherapy, King George's Medical University, Lucknow - 226 003, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1482.183195

Rights and Permissions

Aims: To evaluate the underdosing of the maxillary sinus at its distal end produced by air cavity in the path of the 6 MV photon beam. Materials and Methods: A cubic solid water slab phantom of dimensions 18 cm × 18 cm × 18 cm with 4 cm × 4 cm × 4 cm air cavity 3 cm away from its anterior surface was used in this study. The percentage depth dose (PDD) for 6 MV X-rays along the central axis of the cubical air cavity was measured using thermoluminescent dosimeter-100 chips. The EGSnrc/DOSXYZnrc Monte Carlo (MC) code was used to estimate the PDD values in both homogeneous and inhomogeneous conditions. The dose data were generated for 1 cm × 1 cm, 2 cm × 2 cm, 3 cm × 3 cm, and 5 cm × 5 cm field sizes. Results: Average percentage dose reductions at 1 mm beyond the distal surface of the maxillary sinus for the field sizes 1 × 1, 2 × 2, and 3 × 3 cm2 are 42.4%, 39.5%, and 29.4%, respectively. However, for 5 cm × 5 cm field size, there is a dose enhancement (i.e., overdosing) at 1 mm from the distal surface of the maxillary sinus and the average percentage dose enhancement is 5.9%. Also, beyond 1 cm from the air-water interface, there is dose enhancement for all the field sizes. Conclusion: This study showed that the significant dose reduction occurs near the air-water interface for the treatment techniques using small photon fields such as intensity-modulated radiotherapy or other newer techniques. MC-based treatment planning calculation predicts realistic dose distribution while using small photon fields in the treatment of maxillary sinus.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1467    
    Printed76    
    Emailed0    
    PDF Downloaded102    
    Comments [Add]    

Recommend this journal