Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 6  |  Page : 974-980

Evaluation of the effect of soft tissue composition on the characteristics of spread-out Bragg peak in proton therapy


1 Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Physics, University of Bojnord, Bojnord, Iran
3 Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
4 Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA

Correspondence Address:
Dr. Sayyed Bijan Jia
Department of Physics, University of Bojnord, Bojnord
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1482.220420

Rights and Permissions

Aim: The aim of this study is to evaluate the effect of soft tissue composition on dose distribution and spread-out Bragg peak (SOBP) characteristics in proton therapy. Subjects and Methods: Proton beams with nominal energies of 70, 120 and 210 MeV were considered. The soft tissues and tissue equivalent materials implemented in this study are: 9-component soft tissue, 4-component soft tissue, adipose tissue, muscle (skeletal), lung tissue, breast tissue, A-150 tissue equivalent plastic, perspex and water. Each material was separately defined inside a 20 cm × 20 cm × 40 cm phantom. A multilayer phantom was evaluated as well. The effect of tissue composition on the relative dose in SOBP region (relative to the dose in SOBP region in water), range of SOBP, length of SOBP, and uniformity index of SOBP was evaluated. Results: Various soft tissues and tissue equivalent materials have shown different dose level in SOBPs, ranges of SOBPs, lengths of SOBPs and uniformity indices. Conclusions: Based on the obtained results, various soft tissues and tissue equivalent materials have quite different SOBP characteristics. Since in clinical practice with proton therapy, only the range of SOBP is corrected for various tissues, omission of the above effects may result in major discrepancies in proton beam radiotherapy. To improve treatment accuracy, it is necessary to introduce such effects in treatment planning in proton therapy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed912    
    Printed20    
    Emailed0    
    PDF Downloaded58    
    Comments [Add]    

Recommend this journal