Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 6  |  Page : 936-942

Assessment of the scatter correction procedures in single photon emission computed tomography imaging using simulation and clinical study


1 Department of Medical Physics and Radiology, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
2 Department of Nuclear Medicine, Cardiovascular Interventional Research Center, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
3 Department of Physics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
4 Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
5 Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran

Correspondence Address:
Dr. Ahmad Bitarafan-Rajabi
Department of Nuclear Medicine, Cardiovascular Interventional Research Center, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcrt.JCRT_1085_16

Rights and Permissions

Background: Compton-scattered photons transfer incorrect spatial information. These photons are detected in used photo-peak energy window. In this study, three scatter correction procedures including dual-energy window (DEW), three energy window (TEW), and new approach were evaluated, and then the best procedure based on simulation and clinical conditions introduced. Materials and Methods: In this study, simulation projections and three-dimensional nonuniform rational B-spline–based Cardiac-Torso phantoms were produced by GEANT4 application for emission tomography simulation code. For clinical study, 2-day stress/rest myocardial perfusion imaging (MPI) protocol was performed with 99m Tc-sestamibi for 46 patients. Image quality parameters including contrast, signal-to-noise ratio (SNR), and relative noise of the background (RNB) were evaluated. Results: The simulation results showed that contrast values for DEW, TEW, and new approach were (0.45 ± 0.07, 0.5 ± 0.08, and 0.63 ± 0.09), SNR values (4.74 ± 0.94, 5.58 ± 1.08, and 6.56 ± 1.24), and RNB values (0.33 ± 0.06, 0.33 ± 0.07, and 0.33 ± 0.05), respectively. In clinical study, the contrast values for DEW, TEW, and new approach were 0.53 ± 0.03, 0.57 ± 0.07, and 0.62 ± 0.04 in rest MPI and were 0.52 ± 0.04, 0.57 ± 0.06, and 0.6 ± 0.05 in stress MPI, respectively. Moreover, for the rest images, the SNR values were 7.65 ± 1.9, 9.08 ± 2.2, and 10.2 ± 1.75 and for stress images were 7.76 ± 1.99, 9.12 ± 2.25, and 10.17 ± 2.04, respectively. Finally, RNB values for rest and stress images were 0.12 ± 0.03, 0.13 ± 0.03, and 0.13 ± 0.03, respectively. Conclusion: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1573    
    Printed23    
    Emailed0    
    PDF Downloaded104    
    Comments [Add]    

Recommend this journal