Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 1  |  Page : 79-83

Surgery in cerebral metastases: Are numbers so important?


1 Department of Neuroscience, Division of Neurosurgery, University of Torino, Italy
2 Department of Neuroscience, Division of Neurosurgery, University of Torino; Division of Neurosurgery, University of Brescia, Italy
3 Department of Oncology, University of Torino, Italy
4 Division of Neurosurgery, University of Brescia, Italy
5 Department of Radiation Oncology, University of Brescia, Italy
6 Department of Oncology, Doctoral School in Biomedical Sciences and Oncology, University of Torino, Italy

Date of Web Publication23-Apr-2014

Correspondence Address:
Pier Paolo Panciani
Department of Neuroscience, Division of Neurosurgery, University of Brescia, Italy. P.zza Spedali Civili, 1, 25123, Brescia
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1482.131390

Rights and Permissions
 > Abstract 

Background: The prognosis of cerebral metastases (MTS) is linked to progression of both systemic and local disease. The importance of MTS resection has been already pointed out. The observation of a high mortality for not-neurological causes confirms that the modern treatments allow a significant control of the disease within the nervous system. Nevertheless, management difficulties increase with multiple lesions and in these cases the role of surgery has still to be defined.
Materials and Methods: We collected the clinical data of patients operated in two centers for cerebral MTS from lung carcinoma during 8 years. Patient selection for surgery followed definite criteria; the limit for multiple MTS was three. We analyzed the functional and survival outcomes of the cohort.
Results and Conclusions: Our series included 242 patients: 105 had multiple MTS. Statistical analysis did not show significant differences in mean survival and outcomes between patients with single and multiple lesions. The decease occurred for neurological causes in 15.7% of cases.
The selection of candidates for surgery requires several considerations and entails the success rate of this treatment. In patients with the multiple lesions who fulfilled the selection criteria we observed a nevertheless satisfying success after the operation. Our results imply that surgery may be applied also in selected patients with more diffuse intracranial disease. A pre-operative accurate patient selection is related to acceptable quality-of-life following the operation even in cases of multiple MTS.

 > Abstract in Chinese 

脑转移瘤的手术治疗:转移灶数量很重要么?
背景:脑转移瘤(MTS)的预后与全身及局部疾病的发展相关。MTS手术切除的重要性已被指出。对非神经学原因引起的高死亡率的观察确定了现代医学治疗主要考虑神经系统疾病的有效控制。然而,具体处理上的困难因为多种损伤而增加,手术的地位仍需明确。
材料和方法:我们收集了2个中心8年来肺癌脑转移并接受手术的病人的临床资料。病例选择有明确标准:最少的MTS转移灶个数为3个。我们分析了这群人的功能恢复和生存结果。
结果和结论:总共242例病人:105例有多发MTS。统计学分析表明:单个和多个转移灶病人在平均生存时间和转归上没有明显差异。因神经源性原因引起的死亡占15.7%。
申请手术病例的选择要考虑多个因素,治疗的成功率是需要考虑的。在满足筛选标准的多发转移灶病例中,我们还是得到了令人满意的术后成功率。我们的结果意味着在颅内多发病灶的病人中手术也可以实施。多发脑转移瘤病人,只要术前严格选择,术后仍可有较好的生活质量。
关键词:大脑,肺癌,多发转移,手术,生存




Keywords: Brain, lung cancer, multiple metastases, surgery, survival


How to cite this article:
Agnoletti A, Mencarani C, Panciani PP, Buffoni L, Ronchetti G, Spena G, Tartara F, Buglione M, Pagano M, Ducati A, Fontanella M, Garbossa D. Surgery in cerebral metastases: Are numbers so important?. J Can Res Ther 2014;10:79-83

How to cite this URL:
Agnoletti A, Mencarani C, Panciani PP, Buffoni L, Ronchetti G, Spena G, Tartara F, Buglione M, Pagano M, Ducati A, Fontanella M, Garbossa D. Surgery in cerebral metastases: Are numbers so important?. J Can Res Ther [serial online] 2014 [cited 2019 Sep 20];10:79-83. Available from: http://www.cancerjournal.net/text.asp?2014/10/1/79/131390


 > Introduction Top


Metastases (MTS) are the most common intra-cerebral tumors. About 10-30% of neoplastic patients will ultimately develop a secondary lesion of the brain that sometimes causes the first symptoms of a previously unknown tumor. [1],[2],[3],[4] Advances in the systemic cancer treatment will increase the number of long survivor patients, at risk for developing brain MTS. [5],[6],[7],[8],[9],[10]

The neoplasm that more frequently disseminates to the brain is lung cancer (17%). Other common sources are renal cell (10.5%), breast cancer (5.2%) and melanoma (8%); up to 15% of patients with cerebral MTS anyway do not have radiological evidence of primitive tumors. [8],[9],[11],[12] The instrumental differential diagnosis with other brain lesions may be sometimes difficult. To obtain tissue samples for pathology, the viable tools are biopsy and surgical excision. The histological analysis is mandatory in otherwise unidentified tumors before any treatment and may direct to molecular targeted therapies (eganti- epidermal growth factor receptor). [13]

The prognosis of brain (MTS) is linked to the progression of the systemic and cerebral disease. [13],[14] A substantial proportion of patients die from local progression in the setting of a systemic control; the treatment of cerebral localizations is usually determinant for both survival and quality-of-life. [15],[16]

Among patients in good conditions the removal of cerebral MTS represents the first treatment to consider. Surgery should have an appropriate oncological rationale and should determine the subsequent neurological conditions at least equal to the pre-operative status. Some management difficulties arise when patients harbor more than one intracranial lesion. The role of surgery for multiple cerebral (MTS) has to be assessed considering the expected more diffuse disease and higher risks of iatrogenic worsening.

To evaluate the effectiveness and limits of surgery in the multiple cerebral (MTS) we performed this observational multi-center study. The analysis of the present cohort outcomes may help in the decision-making process for similar patients, who are becoming everyday more common.


 > Materials and Methods Top


We retrospectively collected the clinical data of patients treated for cerebral MTS in two hospitals between January 2003 and 2011. All patients were all addressed to a multidisciplinary team to evaluate the optimal case-tailored treatment and were later followed with monthly clinical assessments.

Inclusion criteria

To avoid biases due to different biological behaviors we only considered patients with the same primary tumor. We chose the non-small cell lung carcinoma (NSCLC) because it was the more frequent.

All the cases that underwent surgery had an intermediate to excellent pre-operative condition, with a Karnofski's performance status (KPS) >70 and MTS larger than 3 cm. The cut-off age for the operation was 70 years, but some exceptions were made for few older patients in extremely good status. In cases with the multiple cerebral MTS, the operation was performed if they were three or less. We removed the symptomatic lesion and all those larger than 3 cm, whenever accessible.

Whole brain radiation therapy followed most of the interventions. Stereotactic radiosurgery (SRS) was applied in case of residual tumor smaller than 3 cm. Chemotherapy was given, whenever appropriate, in both single and multiple MTS groups.

Exclusion criteria

To focus the study on surgical results, we did not consider non-operated patients, treated with radiation alone or with medical or conservative treatment. Supportive care alone was offered to patients with higher comorbidities, older ages and poorer conditions.

We collected the complication rates of the cohort and also analyzed the functional and survival outcomes. In particular we calculated the KPS in the early post-operative phase before adjuvant therapy was started at 15 and 45 days after surgery. In few circumstances, it was not possible to obtain a score from the available data records (patients gone to other centers); thus, we had to get it with telephone interviews. At the end of our inquiry KPS and mortality rate were available for the totality of cases enrolled. The last follow-up assessment occurred in December 2012. In 82% of cases, it was available a detailed report of death causes that were divided in general and neurological.

Data analysis

Data were analyzed as of December 2012. Overall survival (OS) was calculated from the date of surgery to death for any causes or last follow-up. The OS was analyzed by Kaplan and Meier method and the differences between the curves by log-rank test. [17],[18],[19] The statistical analysis for dichotomic variables was performed through the Fisher exact test per P < 0.05. [20] All statistical analyses were performed with the Statistical Package for the Social Sciences (SPSS) software version 17.0 (SPSS Inc., Chicago, IL, USA).


 > Results Top


During the study, we initially collected 419 patients with cerebral MTS from non-small cell lung cancer (NSCLC). A total of 168 were not operated and nine within the surgical group were lost at follow-up. Our final series thus included 242 cases. 137 patients harbored a single intracranial lesion (Group 1), 105 had multiple MTS (Group 2). The main characteristics of the population are summarized in [Table 1].
Table 1: General overview of our cohort

Click here to view


The lesions were located exclusively in the supratentorial space in 170 patients (70%), in the infratentorial in 62 (26%) and in both compartments in 10 (4%). Patients in Group 2 had a lower pre-operative KPS, but the difference was no significative and the median KPS was 80 for groups [Table 1].

Surgery was performed without significant intra-operative complications, obtaining a macroscopic removal of the target lesions in most cases. Adjuvant treatments were later administered according to the standard protocols. SRS was applied in seven cases with residual lesions smaller than 3 cm.

[Table 2] reports the early results after MTS resection. Most of the patients in Group 2 with a reported subtotal resection (P = 0.01), actually had a complete removal of symptomatic lesion and underwent non-surgical treatments for one or two of the smaller MTS. Three patients in both Group 1 and Group 2 were re-operated on the same day for hemorrhage in the surgical field. Other perioperative complications appeared slightly more frequent in Group 2 (P > 0.05).
Table 2: Surgical results

Click here to view


All 242 patients were assessable for KPS at 15 days after surgery. Analyses at 45 days were performed on 240 patients because two cases (one in both groups) dead within 30 days. No patients were lost at follow-up [Table 3]. Fifteen days after surgery the KPS was unchanged or improved in 81.7% of patients in Group 1 and in 83.8% in Group 2, without significant difference between two groups (P = 0.7). Only a minority of those who worsened immediately after surgery then maintained that same impairment: most progressively improved with rehabilitation. No significant difference was observed in the unchanged or improved KPS at 45 days in two groups (83.8% vs. 83.7% P = 0.1). In both groups patients with lesions in the posterior fossa (38 cases in the Group 1 and 34 in the Group 2) seemed to get more benefits after surgery, with overall greater KPS improvements than those with supratentorial MTS. This difference anyway did not result significant [Table 4].
Table 3: Post-operative KPS and survival

Click here to view
Table 4: Improvement of KPS at 15 days after surgery according to metastases locations

Click here to view


Two patients died within 1 month after surgery for medical complications. The others died afterward for respiratory failure, heart failure or paraneoplastic syndromes (deep venous thrombosis, pulmonary embolism). Overall the decease occurred for local progression of the disease and neurological worsening in 15.7% of cases. At last follow-up, only 11 patients were alive and they all had a KPS higher than 80/100 [Table 3].

OS for all patients was 4.5% (11/242) at 1-28 months from surgery. In the Group 1 and 2 OS was respectively 4.4% (6/137) and 4.8% (5/105), without significant difference (odd ratio: 0.9, confidence interval [CI] 95%: 0.2-3; P = 1). OS time was 1-28.4 months (median survival time: 12.2 months - CI 95%: 11.8-13) for the Group 1 and 1-26.7 months (median survival time: 11.7 months - CI 95%: 11.2-13.2) for the Group 2. The log-rank test did not show a significant difference between two groups (P = 0.37) as shown in [Table 3] and [Figure 1].
Figure 1: Kaplan and Meier showing the overall survival time of two groups. Group 1 (red) and Group 2 (blue), P=0.37

Click here to view



 > Discussion Top


Cerebral MTS usually occur late in cancer natural history, but they are nowadays not uncommon in patients with a systemic spreading of the tumor. When left untreated these lesions lead to a rapid decay of the neurological status; about three-quarters of these patients die within the months from diagnosis. [21] The currently available treatments let anyhow see a ray of hope. The importance of intracranial MTS resection has been already pointed out; the rationale for surgery is an immediate control of the local disease. [22],[23]

Yoshida reported that the more frequent causes of death in patients with treated brain MTS seem related to systemic rather than neurological impairment. [24] Sesterhenn et al. underlined that, more generally, in patients with the head and neck tumors the decease is usually due to pneumonia (50%), tumor bleeding (21%) and cachexia (10%). [25] The analysis of mortality in our series confirm the trends reported in the literature, as the more common death cause that we observed was systemic progression of the tumor. Not surprisingly in our selected NSCLC cohort smoking and hypertension were frequent. These risk factors probably increase the patient susceptibility to several post-operative, even fatal, comorbidities such as vascular diseases and renal failure. [26] Moreover, paraneoplastic hypercoagulability, chemotherapy and prolonged use of central venous catheters imply an increased risk of thromboembolism and consequently death. [27]

The observation of a high mortality for non-neurological causes, also in our series, confirms that the modern treatments allow a significant control of the disease within the nervous system. Surgery entails the additional advantage of large tissue-samples availability for a detailed histological analysis that may influence targeted adjuvant therapies. We speculate that the long survivors of our cohort had a gene expression profile particularly responsive to chemotherapy for the systemic diseases. The advent of specific, patient-tailored drugs would dramatically improve the outcomes of medical therapy.

This was a surgical cohort; thus, several metastatic patients were excluded. The selection of candidates for surgery requires several considerations and finally entails the success rate of this treatment. It has been demonstrated that the association between surgery and adjuvant radiation therapy leads to an improvement of survival in patients correctly selected. [23],[28],[29]

Among patients with extremely poor conditions and very old age the benefits due to operation would be nullified by the inescapable expected evolution. The location of the MTS is relevant in the surgical decision making: deep and not easily accessible lesions may be better suitable for other treatments. [30] On the other hand, lesions located within the posterior fossa may be managed in general more aggressively. The results in our series suggest as already expected that in patients with infratentorial MTS surgery can be appropriately performed even with lower pre-operative KPS compared to supratentorial lesions. The good outcomes obtained are probably due to the sudden reversion of hydrocephalus or brainstem compression. According to current literature, we designed surgery for patients with a limited number of cerebral MTS (≤3 lesions). [31] In patients with multiple lesions who fulfilled the selection criteria we observed a nevertheless satisfying success after the operation. The mean pre-operative KPS was lower in Group 2 compared with Group 1 probably for the higher rates of posterior fossa location and for the superior mass effect due to multiple MTS.

We observed a general improvement of early quality-of-life related to the operation. About 80% of cases underwent surgery with no additional impairment and many KPS decreases appeared reversible. The prognosis of patients with cerebral metastatic cancer keeps being poor. Anyhow our results make speculate that surgery may be applied also in selected patients with more diffuse intracranial disease. The main limits of the present study are its retrospective nature with clear patient selection biases, the relatively small cohort analyzed and the use of easy but gross parameters as mortality and KPS. The presence of a control group for sure would have improved the statistical power of the study, but we had difficulties in finding an appropriate one. Our conclusions anyway confirm what observed in other cohorts, reinforcing the recent trend to follow a more aggressive management for patients with the multiple cerebral MTS. [32],[33],[34] Patient selection is still strict; improvements in tailored treatments of systemic cancers may let further extend the surgical indication in next years. The idea to operate on patients with three MTS, unthinkable just 20-30 years ago is nowadays a feasible option.


 > Conclusions Top


management of cerebral MTS is a multidisciplinary job. Surgery allows immediate control of the local disease. A pre-operative accurate patient selection is related to acceptable quality-of-life in the months following the operation even in cases of multiple MTS. Advances in the treatment of the systemic tumors is desirable for a significant improvement of the outcomes.

 
 > References Top

1.Patel AJ, Suki D, Hatiboglu MA, Abouassi H, Shi W, Wildrick DM, et al. Factors influencing the risk of local recurrence after resection of a single brain metastasis. J Neurosurg 2010;113:181-9.  Back to cited text no. 1
    
2.Arbit E, Wroñski M, Burt M, Galicich JH. The treatment of patients with recurrent brain metastases. A retrospective analysis of 109 patients with nonsmall cell lung cancer. Cancer 1995;76:765-73.  Back to cited text no. 2
    
3.Schöggl A, Kitz K, Reddy M, Wolfsberger S, Schneider B, Dieckmann K, et al. Defining the role of stereotactic radiosurgery versus microsurgery in the treatment of single brain metastases. Acta Neurochir (Wien) 2000;142:621-6.  Back to cited text no. 3
    
4.Mintz A, Perry J, Spithoff K, Chambers A, Laperriere N. Management of single brain metastasis: A practice guideline. Curr Oncol 2007;14:131-43.  Back to cited text no. 4
    
5.Arbit E, Wronski M. Clinical decision making in brain metastases. Neurosurg Clin N Am 1996;7:447-57.  Back to cited text no. 5
    
6.Barker FG 2 nd . Craniotomy for the resection of metastatic brain tumors in the U.S., 1988-2000: Decreasing mortality and the effect of provider caseload. Cancer 2004;100:999-1007.  Back to cited text no. 6
    
7.Davey P. Brain metastases. Curr Probl Cancer 1999;23:59-98.  Back to cited text no. 7
[PUBMED]    
8.Davey P. Brain metastases: Treatment options to improve outcomes. CNS Drugs 2002;16:325-38.  Back to cited text no. 8
[PUBMED]    
9.Ewend MG, Carey LA, Morris DE, Harvey RD, Hensing TA. Brain metastases. Curr Treat Options Oncol 2001;2:537-47.  Back to cited text no. 9
    
10.Giordana MT, Cordera S, Boghi A. Cerebral metastases as first symptom of cancer: A clinico-pathologic study. J Neurooncol 2000;50:265-73.  Back to cited text no. 10
    
11.Al-Shamy G, Sawaya R. Management of brain metastases: The indispensable role of surgery. J Neurooncol 2009;92:275-82.  Back to cited text no. 11
    
12.Caroli M, Di Cristofori A, Lucarella F, Raneri FA, Portaluri F, Gaini SM. Surgical brain metastases: Management and outcome related to prognostic indexes: A critical review of a ten-year series. ISRN Surg 2011;2011:207103.  Back to cited text no. 12
    
13.Soffietti R, Rudà R, Trevisan E. Brain metastases: Current management and new developments. Curr Opin Oncol 2008;20:676-84.  Back to cited text no. 13
    
14.Kocher M, Soffietti R, Abacioglu U, Villà S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the EORTC 22952-26001 study. J Clin Oncol 2011;29:134-41.  Back to cited text no. 14
    
15.O′Day SJ, Gammon G, Boasberg PD, Martin MA, Kristedja TS, Guo M, et al. Advantages of concurrent biochemotherapy modified by decrescendo interleukin-2, granulocyte colony-stimulating factor, and tamoxifen for patients with metastatic melanoma. J Clin Oncol 1999;17:2752-61.  Back to cited text no. 15
    
16.Carey LA, Ewend MG, Metzger R, Sawyer L, Dees EC, Sartor CI, et al. Central nervous system metastases in women after multimodality therapy for high risk breast cancer. Breast Cancer Res Treat 2004;88:273-80.  Back to cited text no. 16
    
17.Kaplan EL, Meier P. Non parametric estimation from incomplete observation. J Am Stat Assoc 1958;53:457-81.  Back to cited text no. 17
    
18.Cox DR. Regression models and life tables. J R Stat Soc 1972;34:187-202.  Back to cited text no. 18
    
19.Agresti A. Survey of exact inference for contingency tables. Stat Sci 1992;7:131-77.  Back to cited text no. 19
    
20.Fisher RA. Statistical Methods for Research Workers. Sec. 21.02. Edinburgh: Oliver and Boyd; 1944.  Back to cited text no. 20
    
21.Cairncross JG, Kim JH, Posner JB. Radiation therapy for brain metastases. Ann Neurol 1980;7:529-41.  Back to cited text no. 21
[PUBMED]    
22.Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990;322:494-500.  Back to cited text no. 22
    
23.Vecht CJ, Haaxma-Reiche H, Noordijk EM, Padberg GW, Voormolen JH, Hoekstra FH, et al. Treatment of single brain metastasis: Radiotherapy alone or combined with neurosurgery? Ann Neurol 1993;33:583-90.  Back to cited text no. 23
    
24.Yoshida S, Morii K. The role of surgery in the treatment of brain metastasis: A retrospective review. Acta Neurochir (Wien) 2004;146:767-70.  Back to cited text no. 24
    
25.Sesterhenn AM, Szalay A, Zimmermann AP, Werner JA, Barth PJ, Wiegand S. Significance of autopsy in patients with head and neck cancer. Laryngorhinootologie 2012;91:375-80.  Back to cited text no. 25
    
26.Datema FR, Poldermans D, Baatenburg de Jong RJ. Incidence and prediction of major cardiovascular complications in head and neck surgery. Head Neck 2010;32:1485-93.  Back to cited text no. 26
    
27.Cardim N, Toste J, Carvalho V, Nunes I, Ferreira D, Carmelo V, et al. Playing games with a thrombus: A dangerous match. Paradoxical embolism from a huge central venous cathether thrombus: A case report. Cardiovasc Ultrasound 2010;8:6.  Back to cited text no. 27
    
28.Gaspar LE, Mehta MP, Patchell RA, Burri SH, Robinson PD, Morris RE, et al. The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2010;96:17-32.  Back to cited text no. 28
    
29.Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: A randomized trial. JAMA 1998;280:1485-9.  Back to cited text no. 29
    
30.Sheehan J, Niranjan A, Flickinger JC, Kondziolka D, Lunsford LD. The expanding role of neurosurgeons in the management of brain metastases. Surg Neurol 2004;62:32-40.  Back to cited text no. 30
    
31.Bindal RK, Sawaya R, Leavens ME, Lee JJ. Surgical treatment of multiple brain metastases. J Neurosurg 1993;79:210-6.  Back to cited text no. 31
    
32.Pollock BE, Brown PD, Foote RL, Stafford SL, Schomberg PJ. Properly selected patients with multiple brain metastases may benefit from aggressive treatment of their intracranial disease. J Neurooncol 2003;61:73-80.  Back to cited text no. 32
    
33.Iwadate Y, Namba H, Yamaura A. Significance of surgical resection for the treatment of multiple brain metastases. Anticancer Res 2000;20:573-7.  Back to cited text no. 33
    
34.Schackert G, Steinmetz A, Meier U, Sobottka SB. Surgical management of single and multiple brain metastases: Results of a retrospective study. Onkologie 2001;24:246-55.  Back to cited text no. 34
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  >Abstract>Introduction>Materials and Me...>Results>Discussion>Conclusions>Article Figures>Article Tables
  In this article
>References

 Article Access Statistics
    Viewed2020    
    Printed53    
    Emailed2    
    PDF Downloaded64    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]