Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2013  |  Volume : 9  |  Issue : 3  |  Page : 364-369

Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer


1 Cancer Research Institute of Siberian Branch of the Russian Acad. Med. Sci, Tomsk, Russia
2 National Research Tomsk Polytechnic University, Tomsk, Russia
3 Pushpagiri Institute of Medical Sciences & Research Centre, Tiruvalla, Kerala, India
4 Health Research Foundation, Kyoto 606 - 8225, Japan

Correspondence Address:
Nadezda V Cherdyntseva
Cancer Research Institute of Siberian Branch of the Russian Acad. Med. Sci, Tomsk
Russia
Login to access the Email id

Source of Support: University Grants Commission, New Delhi, India, Conflict of Interest: None


DOI: 10.4103/0973-1482.119303

Rights and Permissions

Aim: To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Materials and Methods: Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Results: Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Conclusion: Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2087    
    Printed72    
    Emailed0    
    PDF Downloaded125    
    Comments [Add]    

Recommend this journal