Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2012  |  Volume : 8  |  Issue : 4  |  Page : 610-618

Dosimetry parameters calculation of two commercial iodine brachytherapy sources using SMARTEPANTS with EPDL97 library


1 Department of Nuclear Engineering, College of Mechanical Engineering, Shiraz University, Shiraz, Iran
2 Department of Nuclear Engineering, College of Mechanical Engineering, Shiraz University, Shiraz, Iran; Department of Aerospace Mechanical Engineering, University of Arizona, Tucson AZ
3 Department of Aerospace Mechanical Engineering, University of Arizona, Tucson AZ

Correspondence Address:
Navid Ayoobian
Department of Nuclear Engineering, College of Mechanical Engineering, Shiraz University, Shiraz
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1482.106576

Rights and Permissions

Aim: Simulating Many Accumulative Rutherford Trajectories Electron Photon and Neutral Transport Solver (SMARTEPANTS) is a discrete ordinates S N Boltzmann/Spencer-Lewis solver that was developed during 1988-1993 by William Filippone and his students. The code calculates particle fluxes, leakage currents as well as energy and charge deposition for coupled electron/photon in x-y-z geometries both in forward and in adjoin modes. Originally, SMARTEPANTS was designed to utilize CEPXS cross-section library for shielding calculation in satellite electronics. The aim of this study was to adapt SMARTEPANTS to use a new photon cross-section library from Evaluated Photon Data Library, 1997 version (EPDL97) for intravascular brachytherapy 125 Isimulations. Materials and Methods: A MATLAB (MathworkNatick, Massachusetts) program was written to generate an updated multigroup-Legendre cross-section from EPDL97. The new library was confirmed by simulating intravascular brachytherapy Best® Model 2301 and Intersource 125 I dosimetry parameters using SMARTEPANTS with different energy groups (g), Legendre moments (L) and discrete ordinate orders (S). Results: The dosimetry parameters for these sources were tabulated and compared with the data given by AAPM TG-43 and other reports. The computation time for producing TG-43 parameters was about 29.4 min in case of g = 20, L = 7 and S = 16. Conclusion: The good agreement between the results of this study and previous reports and high computational speed suggest that SMARTEPANTS could be extended to a real-time treatment planning system for 125 I brachytherapy treatments.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2020    
    Printed51    
    Emailed0    
    PDF Downloaded86    
    Comments [Add]    

Recommend this journal