Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2010  |  Volume : 6  |  Issue : 4  |  Page : 463-465

Apoptosis induced by Magnolia Grandiflora extract in chlorambucil-resistant B-chronic lymphocytic leukemia cells


Department of Pharmacology and Clinical, Faculty of Medical Sciences, National University of La Plata, Buenos Aires, Argentina

Date of Web Publication24-Feb-2011

Correspondence Address:
Gustavo Horacio Marin
Faculty of Medicine, UNLP Street 60 y 120, La Plata - Zip Code: 1900, Buenos Aires
Argentina
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1482.77107

Rights and Permissions
 > Abstract 

Background: B-cell chronic lymphocitic leukemia (B-CLL) still remains as an uncurable disease. Even the newest antineoplastic agents have demonstrated limitations in their efficacy. For this reason, further research of new compounds must be done. New pharmacological properties can be obtained from a great diversity botanical species. Among these products, Magnolia Grandiflora receives our attention since it mainly contains Honokiol which had demonstrated effect against B-CLL cells activating different cell death pathways.
Aim: To test the ability of Magnolia Grandiflora extracts to induce apoptosis of B-CLL cells in vitro.
Materials and Methods: Herb's extraction: Twenty grams of powdered material were submitted to three consecutives decoctions with 500 ml of distilled water (96 °C), filtered and followed by ultrafiltration with cellulose membrane, lyophilized and reconstituted in AIM-V medium at a final concentration of 10 mg/ml solution. B-CLL chlorambucil- resistant cells were separated and cultivated in the presence of Magnolia's extract. Samples of cells were taken from the cultures at 24, 48 and 72 h for apoptosis analysis by flow cytometry measuring positive annexin V (0.1 μg/ml) cells. Statistics: Apoptosis values were represented by the mean plus or minus SD (± SD) for five independent experiments. Statistical significance was determined by Student's t -test. A P value of 0.05 or less was considered as significant.
Results and Conclusion: This article discusses the apoptosis properties of Magnolia on B-CLL cells. The evidence suggests a potentially effective repertoire for B-CLL treatment. This herb extract might have promising therapy strategies in treating B-CLL or other hematological disease resistant to alkylating agents in clinical practice.

Keywords: Apoptosis, chronic lymphocitic leukemia, magnolia


How to cite this article:
Marin GH, Mansilla E. Apoptosis induced by Magnolia Grandiflora extract in chlorambucil-resistant B-chronic lymphocytic leukemia cells. J Can Res Ther 2010;6:463-5

How to cite this URL:
Marin GH, Mansilla E. Apoptosis induced by Magnolia Grandiflora extract in chlorambucil-resistant B-chronic lymphocytic leukemia cells. J Can Res Ther [serial online] 2010 [cited 2019 Nov 23];6:463-5. Available from: http://www.cancerjournal.net/text.asp?2010/6/4/463/77107


 > Introduction Top


Diverse groups of botanical natural products have been described as the components of different Latin American Indians or Chinese traditional medicines. [1],[2] Anti-tumor properties of many of these compounds have been recognized. Magnolia Grandiflora mainly contains Honokiol, Magnolol and Parthenolide which is a sesquiterpene lactone. [3] Honokiol and Magnolol are the major active constituents extracted from the bark of different Magnoliaceae species like Magnolia officinalis and Magnolia Grandiflora. They have a variety of pharmacological effects, such as anti-inflammatory, [4] antithrombotic, [5] anti-arrhythmic, [6] antioxidant [7] and anxiolytic effects, [8] and more recently, cytotoxic activity by inducing cell apoptosis in some cell lines. [9] Magnolol and Honokiol-triggered apoptotic process is accompanied with down-modulation of Bcl-XL molecules [10] or through Caspase cascades activation. [11] Parthenolide, a sesquiterpene lactone isolated from differents herbs (included Magnolia), is a novel NF-kappa B inhibitor [3] with interesting antineoplastic properties. [12],[13],[14] We previously had shown the anti tumor activity of Parthenolide in chronic lymphocitic leukemia (CLL) untreated model. [15] Since Parthenolide is a component of Magnolia, this herb might also have antineoplasic properties.

The objective of this study has been to demonstrate Magnolia Grandiflora's capacity to induce apoptosis in untreated B-cell chronic lymphocitic leukemia (B-CLL) cells and chlorambucil- resistant B-CLL cells model.


 > Materials and Methods Top


Herb's extraction : Magnolia Grandiflora seed cones were collected, dried and grounded. Twenty grams of powdered material was extracted in a glass pot by three consecutives decoctions with 500 ml of distilled water at the sub-boiling point (96°C.) for 50 min each, allowed to cool to room temperature, mixed, centrifuged and filtered though a microfilter followed by ultrafiltration with a cellulose membrane. The ultrafiltrates were lyophilized and then reconstituted for the experiment in AIM-V medium at a final concentration of 10 /CD23/CD19 in flow cytometry analysis (Coulter Epics XL).

Cell Cultures: Leukemia cells either B-CLL or chlorambucil-resistant B-CLL cells (ChR B-CLL cells-) were tested by seeding Magnolia's extract in triplicate 2 ml cultures at a cell density of 2 Χ 10 5 cells per culture in 15 ml Falcon test tubes and three different Magnolia's dilutions (1/300; 1/600 and 1/1200). The test tubes were incubated under standard conditions (37°C, 5% CO 2 and 80% humidity). Incubation was continued for two days. Samples of cells were taken from the cultures at 24, 48 and 72 h (by triplicate assays) for apoptosis analysis.

Apoptosis analisis: The percentage of CD5-CD19 cells in apoptosis process was analyzed by flow cytometry measuring positive annexin V (0.1 μg/ml) cells (by tripicate). Results were expressed as the average values of these measurements. Same cells submitted only to media cultures (no Magnolia product in the culture) served as negative apoptotic controls.

Statistics: Apoptosis values were represented by the mean plus or minus SD (± SD) for three independent experiments of each culture. Statistical significance was determined by Mann-Whitney non-parametric test. A P value of 0.05 or less was considered as significant.


 > Results Top


Aqueous Magnolia extract displayed apoptotic effect on untreated B-CLL cells and also heavy treated with chlorambucil B-CLL cells in vitro.

Data shows that single 1/300 Magnolia`s extract dilution is active against chlorambucil- resistant B-CLL cells since these cells had very low viability after 24 h in Anexin-V flow cytometry tests .

When apoptosis process was measured, we found that Magnolia extract [Figure 1] at 1/300 dilution caused apoptosis in 58.4 ± 7.6% of the ChR B-CLL cells or 62.3 ± 5.2% non-resistant B-CLL cells at 24 h [Figure 2] and [Figure 3] and 87.6 ± 4.1% or 84.9± 6.9% respectively at 48 h of culture with Magnolia's extract at 1/300 dilution [Figure 1]. However, at 1/600 or 1/1200 Magnolia's dilution, the apoptosis was similar to control group (placebo's extract) [Figure 1].
Figure 1: Apoptosis induced by Magnolia's extract at different dilutions

Click here to view
Figure 2: Apoptosis at 24 hs in CHR B-CLL cells induced by Magnolia's
extract


Click here to view
Figure 3: Apoptosis at 24 hs in non-resistant B-CLL cells induced by
Magnolia's extract


Click here to view


Statistical significant differences were observed between ChR B-CLL or non-resistant B-CLL cells submitted to 1/300 dilution Magnolia's extract, compared to either placebo or 1/600, 1/1200 dilution extracts (P=0.001 in all cases).


 > Discussion Top


Since large amount of research done on B-CLL during the past years has not changed at all its prognosis, new therapeutic pathways are needed in order to change this illness outcome. This work shows the potent apoptotic effect of Magnolia Grandiflora on B-CLL cells that had demonstrated previous resistance to chorambucil treatment.

Our results provide clues of potentially interacting pathways involving different aspects of B-CLL cell apoptosis that could be exploited in future therapies. In previous papers, [15] we had published that Magnolia's extracts have efficacy in apoptosis and cytotoxicity induction and that these properties are exhibited mainly in tumors and not in normal cells, suggesting that an increase in NF-kappa B inhibitory protein and a decrease in NF-kappa B DNA binding activity or EGFR/PI3K/Akt signaling pathway [16] or inhibition of telomerase activity might be involved in apoptosis induction. [17]

The water extract of Magnolia Grandiflora had demonstrated in vitro activity against both non-resistant and chlorambucil-resistant B-CLL cells suggesting that this family of herb's extracts might have promising therapy strategies in treating B-CLL and other hematological diseases resistant to alkylating agents.

 
 > References Top

1.Song WZ, Cui JF, Zhang GD. Studies on the medicinal plants of the Magnoliaceae tuhoupo of Manglietia. J Chin Herbs 1989;24:295-9.   Back to cited text no. 1
    
2.Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 2005;66:5-29.  Back to cited text no. 2
[PUBMED]  [FULLTEXT]  
3.Wen J, You KR, Lee SY, Song CH, Kim DG. Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J Biol Chem 2002;277:38954-64.   Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4.Yip-Schneider MT, Nakshatri H, Sweeney CJ, Marshall MS, Wiebke EA, Schmidt CM. Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells. Mol Cancer Ther 2005;4:587-94.   Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.Yang SE, Hsieh MT, Tsai TH, Hsu SL. Inhibitory effect of magnolol and honokiol from Magnolia obovata on human fibrosarcoma HT-1080. Invasiveness in vitro. Planta Med 2001;67:705-8.  Back to cited text no. 5
[PUBMED]  [FULLTEXT]  
6.Sweeney CJ, Mehrotra S, Sadaria MR, Kumar S, Shortle NH, Roman Y, et al. The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol Cancer Ther 2005;4:1004-12.  Back to cited text no. 6
[PUBMED]  [FULLTEXT]  
7.Battle TE, Castro-Malaspina H, Gribben JG, Frank DA. Sustained complete remission of CLL associated with the use of a Chinese herbal extract: Case report and mechanistic analysis. Leuk Res 2003;27:859-63.  Back to cited text no. 7
[PUBMED]  [FULLTEXT]  
8.Wiedhopf RM, Young M, Bianchi E, Cole JR. Tumor inhibitory agent from Magnolia grandiflora (Magnoliaceae). I. Parthenolide. J Pharm Sci 1973;62:345.  Back to cited text no. 8
    
9.Clark AM, El-Feraly FS, Li WS. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J Pharm Sci 1981;70:951-2.  Back to cited text no. 9
[PUBMED]    
10.Yang SE, Hsieh MT, Tsai TH, Hsu SL. Down-modulation of BCl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem Pharmacol 2002;63:1641-51.  Back to cited text no. 10
[PUBMED]  [FULLTEXT]  
11.Ross JJ, Arnason JT, Birnboim HC. Low concentrations of the feverfew component parthenolide inhibit in vitro growth of tumor lines in a cytostatic fashion. Planta Med 1999;65:126-9.  Back to cited text no. 11
[PUBMED]  [FULLTEXT]  
12.Chen YC, Sosnoski DM, Gandhi UH, Novinger LJ, Prabhu KS, Mastro AM. Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer. Carcinogenesis 2009;30:1941-8.  Back to cited text no. 12
[PUBMED]  [FULLTEXT]  
13.Zhao LJ, Xu YH, Li Y. Effect of parthenolide on proliferation and apoptosis in gastric cancer cell line SGC7901. J Dig Dis 2009;10:172-80.  Back to cited text no. 13
[PUBMED]  [FULLTEXT]  
14.Zhang D, Qiu L, Jin X, Guo Z, Guo C. Nuclear factor-kappaB inhibition by parthenolide potentiates the efficacy of Taxol in non-small cell lung cancer in vitro and in vivo. Mol Cancer Res 2009;7:1139-49.  Back to cited text no. 14
[PUBMED]  [FULLTEXT]  
15.Marin GH, Mansilla E. Parthenolide has apoptotic and cytotoxic selective effect on B-chronic lymphocytic leukemia cells. J Appl Biomed 2006;4:135-9.   Back to cited text no. 15
    
16.Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 2009;106:1113-22.  Back to cited text no. 16
[PUBMED]  [FULLTEXT]  
17.Kanno S, Kitajima Y, Kakuta M, Osanai Y, Kurauchi K, Ujibe M, et al. Costunolide-induced apoptosis is caused by receptor-mediated pathway and inhibition of telomerase activity in NALM-6 cells. Biol Pharm Bull 2008;31:1024-8.  Back to cited text no. 17
[PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1], [Figure 2], [Figure 3]


This article has been cited by
1 Magnolia dealbataseeds extract exert cytotoxic and chemopreventive effects on MDA-MB231 breast cancer cells
Angel Josabad Alonso-Castro,Fabiola Domínguez,Alejandro García-Regalado,Ignacio González-Sánchez,Marco A. Cerbón,Alejandro García-Carrancá
Pharmaceutical Biology. 2014; : 1
[Pubmed] | [DOI]
2 Heck products of parthenolide and melampomagnolide-B as anticancer modulators that modify cell cycle progression
Narsimha R. Penthala,Shobanbabu Bommagani,Venumadhav Janganati,Kenzie B. MacNicol,Chad E. Cragle,Nikhil R. Madadi,Linda L. Hardy,Angus M. MacNicol,Peter A. Crooks
European Journal of Medicinal Chemistry. 2014;
[Pubmed] | [DOI]
3 Effect of honokiol on erythrocytes
Mohanad Zbidah,Adrian Lupescu,Tabea Herrmann,Wenting Yang,Michael Foller,Kashif Jilani,Florian Lang
Toxicology in Vitro. 2013; 27(6): 1737
[Pubmed] | [DOI]
4 The absorption and transport of magnolol in Caco-2 cell model
An-guo Wu,Bao Zeng,Meng-qiu Huang,Sheng-mei Li,Jian-nan Chen,Xiao-ping Lai
Chinese Journal of Integrative Medicine. 2013; 19(3): 206
[Pubmed] | [DOI]
5 Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities
Ankit Kumar,Umesh Kumar Singh,Anurag Chaudhary
Future Medicinal Chemistry. 2013; 5(7): 809
[Pubmed] | [DOI]
6 Effect of honokiol on erythrocytes
Zbidah, M. and Lupescu, A. and Herrmann, T. and Yang, W. and Foller, M. and Jilani, K. and Lang, F.
Toxicology in Vitro. 2013; 27(6): 1737-1745
[Pubmed]
7 Honokiol analogs: A novel class of anticancer agents targeting cell signaling pathways and other bioactivities
Kumar, A. and Kumar Singh, U. and Chaudhary, A.
Future Medicinal Chemistry. 2013; 5(7): 809-829
[Pubmed]
8 Honokiol: A novel natural agent for cancer prevention and therapy
Arora, S. and Singh, S. and Piazza, G.A. and Contreras, C.M. and Panyam, J. and Singh, A.P.
Current Molecular Medicine. 2012; 12(10): 1244-1252
[Pubmed]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  >Abstract>Introduction>Materials and Me...>Results>Discussion>Article Figures
  In this article
>References

 Article Access Statistics
    Viewed4434    
    Printed175    
    Emailed4    
    PDF Downloaded414    
    Comments [Add]    
    Cited by others 8    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]