Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2009  |  Volume : 5  |  Issue : 9  |  Page : 67-73

Short-term exposure of multicellular tumor spheroids of a human glioma cell line to the glycolytic inhibitor 2-deoxy-D-glucose is more toxic than continuous exposure


Department of Biocybernetics, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Marg, New Delhi, India

Correspondence Address:
S Bilikere Dwarakanath
Division of Biocybernetics, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Road, Timarpur, New Delhi -110 054
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1482.55147

Rights and Permissions

The glycolytic inhibitor 2-deoxy-D-glucose (2-DG) has been used as a therapeutic agent and as an adjuvant in cancer therapy with either weekly fractions of the treatment or daily administration. While the weekly fraction has often been found to be nontoxic and effective, other treatment regimes are tolerated to a relatively lesser extent. It was therefore, considered worthwhile to investigate the efficacy of short- and long-term exposure of tumor cells to 2-DG under the controlled conditions. Seven-day-old MTS were exposed to 2-DG (5 mM, equimolar to glucose concentration in media) for different time intervals (30 min to 24 h) trypsinized and plated for clonogenecity. Alternatively, spheroids were grown either continuously in the presence of 2-DG or were treated with 2-DG for 2 h (short-term exposure) and grown in 2-DG-free media for 21 days and assessed for spheroid growth, cell viability, apoptosis, cytogenetic damage, mitochondrial status, and oxidative stress. Exposure of spheroids to 2-DG for 2-4 h induced 30% cell death (SF 0.70) while, a 24-h exposure resulted in only a marginal decrease in clonogenecity (SF 0.95). Furthermore, the spheroids disintegrated completely by 28 days in the case of 2-h exposure to 2-DG, while spheroids grown continuously in the presence of 2-DG repopulated. The cytotoxicity following short-term exposure of MTS to 2-DG was primarily due to the induction of apoptosis revealed by morphological features as well as flow cytometric analysis of the DNA content. Interestingly however, cytogenetic damage (micronuclei induction) was observed in spheroids that were continuously exposed to 2-DG. Short-term exposure to 2-DG resulted in a significant increase in ROS levels and a reduction in the levels of unoxidized cardiolipin as measured by NAO suggesting the involvement of mitochondria leakiness leading to oxidative stress which, could be responsible for apoptotic cell death observed under these conditions. However, continuous exposure to 2-DG resulted in a moderate level of oxidative stress leading to the genomic instability. Preliminary studies also show that spheroids exposed continuously to 2-DG result in the development of resistance to certain chemotherapeutic drugs which could be correlated with elevated levels of mdr1. The present results suggest that a persistent down-regulation of glycolysis (as seen here with continuous exposure to 2-DG) could activate prosurvival responses besides inducing moderate levels of oxidative stress resulting in the development of resistance against therapeutic agents.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3531    
    Printed135    
    Emailed1    
    PDF Downloaded440    
    Comments [Add]    
    Cited by others 1    

Recommend this journal