
ORIGINAL ARTICLE 



Year : 2006  Volume
: 2
 Issue : 4  Page : 171181 

Dose concept of oncological hyperthermia: Heatequation considering the cell destruction
A Szasz, Gy. Vincze
Department of Biotechnics, St. Istvan University, Budapest, Hungary; OncoTherm, Budapest, Hungary
Correspondence Address: A Szasz Head of Biotechnics Department, St. Istvan University Hungary
 4 
DOI: 10.4103/09731482.29827 PMID: 17998700
We shall assume, of course, that the objective of hyperthermia is to destroy the malignant cells. Destruction definitely needs energy. Description and quality assurance of hyperthermia use the Pennes heat equation to describe the processes. However the energy balance of the Pennesequation does not contain the hyperthermic celldestruction energy, which is a mandatory factor of the process. We propose a generalization of the Pennesequation, inducing the entire energy balance. The new paradigm could be a theoretical basis of the till now empirical doseconstruction for oncological hyperthermia. The cell destruction is a nonequilibrium thermodynamical process, described by the equations of chemical reactions. The dynamic behavior (time dependence) has to be considered in this approach. We are going to define also a dose concept that can be objectively compared with other oncological methods. We show how such empirical dose as CEM43oC could be based theoretically as well.
Keywords: Celldestruction, dose of hyperthermia, oncothermia, Pennesequation
How to cite this article: Szasz A, Vincze G. Dose concept of oncological hyperthermia: Heatequation considering the cell destruction. J Can Res Ther 2006;2:17181 
> Introduction   
The history of hyperthermia is a few thousand years old. The objective of application of oncology is indisputable: to destroy selectively  if possible  the malignant cells, to eliminate the tumor by heat.[1],[2] The most evident appearance of this concept is the highly local invasive, ablation technique. In spite of the intensive publication activity: remarkable positive evidencebased clinical results[3],[4],[5],[6],[7] and comprehensive articles[8],[9],[10],[11] published on the subject, oncological hyperthermia strives against a number of unsolved problems and the lack of recognition.[12],[13]
The deepheat targeting and control of noninvasive transfer of energy constitute a major share of problems. The fundamental means and condition of the treatment quality shall be the adequate measurability and reproducibility. The control possibility is also an indispensable requirement in the process of the treatment of patients. For that very reason the theoretical discussion and strict biophysical examination of the actually used, mainly experimentally introduced, control parameters and dose concepts cannot be left out of serious investigation.
It seems to be of vital importance the definition of hyperthermia object function in oncology. The definite objective to eliminate the malignancy needs clear measurable qualitative goals and its dose quantification. Two main qualities are obviously in consideration: the achieved temperature (measured grades) and the absorbed heat (measured in joule). In our present paper we directly propose to use the absorbed energy (heat) to measure the hyperthermia dose. We disagree to regard the actually reached temperature to characterize the process. According to our position the temperature could only be a possible tool to reach the objective, but must not be a goal. In simple theoretical formulation: if the absorbed energy of destruction purpose increases only the temperature then no energy is consumed to destroy the malignancy, to break off the actual chemical bonds. A part of the energy has to expend for the bondbreaking. This energy will not increase the average energy (temperature) of the tissue; it will be missing from the overall temperature control of the system. Other wording of the argument: if the destruction has a demand of energy then this energy will be absent from the internal energy characterized by the temperature. Therefore, the temperature alone is not enough for the description of the processes taking place at hyperthermia. This is the reason why the hyperthermia characterization extends the temperature measurements by its timeaverage also.[14] The temperature characteristics and their dynamism at the only temperature change was theoretically discussed by Pennes,[15] in 1948. His formulation describes a nonequilibrium heatflow when the temperature is the only driving force and only the result of the changes in this picture:
where the ρ, ρ_{b}, c, c_{b}, κ, w are the relevant parameters: tissuedensity, blooddensity, tissuespecificheat, bloodspecificheat and the bloodperfusionrate, respectively. T_{b}, Q_{m} and Q_{s} are the bloodtemperature, the metabolicrate and the energy, which is the heatsink or source, (in our hyperthermia case it is the absorbed from external sources), respectively. The derivatives are performed by time ( t ) and place ( x ). This equation describes correctly the temperaturedependent part of the heatflow in the tissue excited by outside energy. The equation is applicable only in the case when not any phase transitions or other energy sink exists, so the distortion phenomenon is excluded.
However hyperthermia is devoted to destroy the cells, it is not an only temperature process. Besides the temperature development during hyperthermia, three things can happen with the thermally excited cells:
 they return to their original healthy state (reversible change, it is not expectable effect),
 they become lifeless by apoptosis,[16]
 they become lifeless by necrosis.[17]
The exact mechanism of the hyperthermia is not known yet, but some widely accepted assumptions could be described.
Vascular changes
Increase of the temperature causes a general vasodilatation and connected increase of the bloodperfusion in the healthy tissue. At the feverrange temperatures it is the same in the tumors, but in higher temperatures a vasoconstriction happen in certain tumors leading to decreased blood perfusion and suppressed heat conduction,[18],[19],[20] while the trend of vasolidation in the healthy tissues is unchanged, leading to increased blood perfusion and heat conduction in this region.[21]
Altered ionic gradients
Increased temperatures cause structural alteration in transmembrane proteins causing a change in active membrane transport and membrane capacity[22] leading to substantial changes in potassium, calcium and sodium ion gradients.[23] Moreover, hyperthermia increases biochemical reaction rates[24] and therefore the metabolic rate as well. Often, however, there is not enough oxygen to accommodate the increased metabolic rate resulting in hypoxia[25] and anaerobe metabolism producing lactate[26] and cell destruction by acidosis.
Cellular membrane changes
It has been long known that hyperthermia can cause softening or melting of the lipid bilayer,[27],[28],[29] it can change lipidprotein interactions[30] and it can denature proteins.[31] All of these events can significantly disrupt a tumor cell's capacity to divide. The decreasing membrane potential,[32] disrupted cellular function[33],[34] and thermal block of electrically excitable cells[32],[35] could be observed. The osmotic swelling[36],[37] unscratches and could disrupt the cellular membrane.
Cellular heatstress consequences
Increased metabolism significantly decreases the cellular ATP stores leading to increased cell destruction.[26] The missing ATP lowers the regular ionic exchange by membranepumps, decreasing the pH of the cytoplasm. The decreased ATPconcentration blocks the normal reparation mechanisms of the cell.[38] Increased temperatures can slow down or even block DNA replication;[39],[40] has been hypothesized to have a sensitizing effect of radiotherapy.[41] The hyperthermia induced heatstress could block essential cellular reactions, recognized in the clinical practice.[42] The heatstress activates heatshockprotein synthesis,[43] which anyway exist in high concentration in the malignant cells.[44],[45],[46] This could cause to an effective protection of the cell against apoptosis[47] and can also lead to a multidrug resistance.[48] Nonthermal effects (mainly electromagnetic field stresses) could also produce chaperonesynthesis.[49],[50] On the other hand, the chaperone HSP70 assists to freeze the actual dynamic equilibrium (the "statusquo") and by expression of the outermembrane it tries to reestablish the cellular communication in the extracellular electrolyte.[51] It is shown that their expression on the cellmembrane gains the apoptotic signals and enhances the immune reactions.[51] HSP participates in the activation of the p53 tumorsuppresser[52] and has been associated with the tumorsuppresser retinoblastoma protein.[53]
All the above effects could be temperaturedependent, but energyconsuming also. The individual energyintake of the above processes will definitely modify the average energy distribution (temperature). Unfortunately, this type of energysink is missing from the Pennes bioheatequation.[15] Pennes created this equation for the examination of bloodstream of human forearm in rest, excluding all the changes which could use energy for something else than the temperature. (He emphasized for the description the equilibrium, fixing the forearm in resting state.) For this purpose Pennes equation is correct and usable, since the internal energy depends exclusively on the temperature, for what numerous modelcalculations were provided.[54],[55],[56],[57] To clear the timedependent transient problems some solutions were published.[58],[59]
Some special papers were devoted to modify the Penneslike equations,[60],[61],[62],[63] but no one had considered the energy taken on the distortion of the actual arrangements. The only temperature investigations (study the average energy), the change of chemical bonds, has no role at all and the energy consumption required for special purposes is not included at all. However, in the case of oncological hyperthermia we have to describe the goal of the treatment: the cellular distortion. Definitely, if the energy could be used only for the chemical changes (distortion of the molecules and restructure the arrangements) then the temperature could remain constant, no energy consumption is made for the average energydistribution. We have to construct a model resembling better to the reality if we suppose that the internal energy is the state function of not only the temperature T but of other parameters too, which could describe the energy consumption of the structural and chemical changes. The nonthermal parameters have to be measured invivo through their measurable consequences (e.g. impedance of the tissue, dielectric constant of the tissue, heat and electric conduction of the tissue, etc.). We are going to refer to these parameters as internal variables of a given cellular composition.
> Materials and Methods   
The distortion of the cells and tumortissue by hyperthermia is the result of a thermodynamic process. The process is irreversible, so a reactiondiffusionkinetics is not able to describe it, applying the nonequilibrium thermodynamics is necessary. We are going to describe the principles necessary for the thermodynamical theory of hyperthermia.
(i) The state of the examined cancerous tissue can be expressly characterized by the u internal energy (per unit volume) and by the n_{ 1} , n*, n_{ 2} , molar numbers of the intact, the thermally exited and the dead (necrotic or apoptotic way) cell clusters, respectively. For the sake of simplicity, the ionic composition of tissue is considered as constant.
(ii) Let us introduce the internal energy of tissue as the statefunction of the above stateparameters:
(iii) The u internal energy of the tissue fulfils the firstlaw of thermodynamics:[64]
where J_{q} is the density of heat flux of thermal conduction, while p_{e} is the heat input of unit volume generated by external actions (in our case, the electric energy heatinput) and the last term is the blood perfusion. This energybalance is the theoretical basis of the Pennes equation (1) and its various modifications.[65]
(iv) We might introduce the s=s(T,n_{ 1} ,n*,n_{ 2} ) state function of entropy, the change of which consists of two parts:
entropy production  of the irreversible external and internal processes (e.g. cell destruction, heatconduction, etc.), respectively. Of course we have to study the entropy changes due to the overall modifications; including the structural, chemical, a phase parameters. Through the change of the entropy, the entire complex process could be controlled.
(4) fulfils the ClausiusDuhem inequality:[64]
(vi) We apply also the Gibbs and Maxwellrelations wellknown from the stationary thermodynamics:[64]
where μ_{ 1}, μ*, μ_{ 2} are the chemical potentials of the insentient, the excited (by hyperthermia) and the lethally modified (by apoptosis or necrosis) cellclusters, respectively.
For the cell transformation occurring during the hyperthermia process, the intact cells ( A_{ 1} ) have been transformed to their excited ( A* ) and their lethal (necrotic or apoptotic) ( A_{ 2} ) form. The following formal, reaction equations" could be constructed:
The first equation means that the insentient cancerous cell gets into the A * excited transient state on the effect of thermal excitation and from this state it might return to its original state as well. The second reaction is the nonreversible celldeath. The κ, κ_{ 1} , κ_{ 2} quantities above the arrows denote the specific reaction rates of processes. The first has a chemical equilibrium, the second hasn't; it is permanently active till the energy is sufficient for the action. Suppose, the producing A* is stationer, which happen, if k was much larger than the other two rateconstants, (which is likely in the hyperthermia process). So the production of the excited cells is constantly reproducing the deaths by A_{ 2} ; the decomposition reaction advances with constant velocity. Next, for simplicity, we are going to examine a case like this.
Let us define the ζ_{ 1} and ζ_{ 2} generalized reaction coordinates as independent variable. Then, the ∂ζi / ∂t reaction velocities relating to each of the above reactions can be introduced by using the following equations:
The subscripts 1 and 2 at derivatives denote the process by (8) and (9), respectively.
The actual form of entropy production[66] which is of primary importance in the Onsager nonequilibrium thermodynamics  can be determined from the (3), (4), (5), (7) and (10) equations:
The corresponding affinities are denoted by A_{i}. Hereby, we have got the entropy production as the bilinear expressions of the
thermodynamical currents ( J ) and dissipative forces ( X ), where T is the symbol of transposition.
The expressions of the reaction equations (8) and (9) entropy production (11) allow a process, where there is no heat conduction and the reaction of (8) results in equilibrium, while the (9) does not, namely, the
conditions are valid. (The reaction is performed in isotherm conditions producing constant excited cells in the system.) Instead of the n_{ 1} , n*, n_{ 2} variables,  which are not independent in accordance with (8) and (9), the internal energy and entropy with the independent reaction coordinates have the
caloric state equations. Now, the Gibbs and Maxwellrelations of (7) are replaced by the following expression:
In order to get the definite form of (14) let us expand the entropy in series and stop at the second term. Then:
Whereas, pursuant to the reaction equation (8) in equilibrium if A_{ 1} =0, thus, from this and from the above relationship we get that
From these we have a unique solution for ζ_{1} at an arbitrary
With this, the expression of entropy from (16) will be:
Considering that according to the first Maxwellrelation of (15) ∂u = T∂s, we get from the above expression that the partial timederivative of the internal energy will be as follows:
where ρ is the massdensity, c is the coefficient of specific heat and r_{ 1} , r_{ 2} are the reaction heats of the definite cell transformations of (8) and (9).
The material equations of transport processes can be formed by using the Onsager theory. Consequently, the relationship between the thermodynamic forces and currents (12) is linear.[64] In accordance with the Curie theory, only the currents and forces of the same tensor order can interfere,[64] therefore, the Onsager constitutive equations will have the following form:
Here the L_{ mn} , (m,n = 1,2) are the Onsagercoefficients, which might also depend on temperature and reaction coordinates. The Onsager theory of the nonequilibrium thermodynamics is not able to bring forward more. The reaction kinetics has to be used for the definition of the form of L_{ mn} , (m,n = 1,2).
In the interest of a simple discussion we are going to ignore the conduction coefficients of mixed indices, which  in general  can be done as the cross effects are usually weaker than the primary processes. With this, also the coupling of reaction equations will be abolished. We use the
chemical reaction kinetics equation;[67] where R is the universal gas constant. We are going to examine how the above equation can be linearized and, hereby, how it can be harmonized with the Onsager theory. Let us transform the equation as follows:
Then, supposing that the power index of the exponential member is small, let us expand it in series and stop at the second order:
Consequently, the Onsager conduction coefficient has Arrheniustype temperature dependence, which is wellobserved in many experimental works.[68]
In accordance with the above the Onsager materialequations
(21), let us consider the
form. Here the conduction coefficients show a dependence again similar to the Arrheniuslaw, which has been observed also at hyperthermia.[69],[70] The materialequations (26) can be further concretized if we take the form of entropy (19) and the definition of activities (15) into consideration. Then, we get after some transformations that
Here the τ time constant and ζ_{ 1e} equilibrium value of reaction depend on the temperature. Under the excitation the cancerous cells reach an activated level approaching exponentially in a steadystate. The second equation describes the celldeath, which practically means that the cell destruction takes place linearly by decomposition and its temperature dependence is governed by the Arrheniuslaw.
> Results   
If we substitute the caloric equation (20) and  from (27)  the Fourierlaw into the internal energy balance (3) then we have the heat equation valid during the process of hyperthermia:
We have also from (27) the two
reaction equations. Consequently, if we want to determine the temperature of tissue and the level of cell destruction then we have to solve the system of equations comprising the above three equations, which are coupled because of the coefficients of (29) are temperature dependent. By using the second equation of (29) the equation (28) can be simplified and we get the following equations to be solved:
> Discussion   
The above derived modified system of the Pennesequation (30) contains already the cell destruction energy, so it provides a full picture about the energy usage. The ζ_{1} and ζ_{2} generalized reaction parameters are giving additional terms and an independent equation to the classical, equilibrium Pennes equation.
The right way to choose the dose is if we suppose that the relevant quantities are the energy necessary for the cell destruction. This is derived from the expression of entropy production (11). From this, the entropy production resulting from cell destruction is:
And the power dissipation is Ttimes higher:
The proposed dose can be calculated as the time integral of the power:
If we substitute here the expression of activities from (15) and the kinetic equation (27) we get that the first member is in connection with the activation and the second one with the celldeath.
To make comparison of the dose defined by the entropy with the experimentally used empirical dose at reference CEM43oC, let us examine the form of this dose to the reference temperature of 43oC. In this case the first term of (34) can be calculated in a simple way, so we get:
If we neglect the first term of (35) then  similarly to the CEM43oC empirical dose  we get a dose proportional to the time.
For an other constant temperature this dose has the
form. These two doses are equivalent if
From this, the equivalent treatmenttime is:
If the temperature wasn't constant during the actual therapy (denote its duration by t ), the equivalent treatment time is an integral:
The presently derived thermodynamical dose is connected to the empirical CEM43oC one.
Accordingly, if we carry out the treatment under the above conditions at the given temperature then the treatment efficacy can be characterized by the time alone as a dose. In other words: if the temperature is constant and there is no "memory"effect exists (namely, the system does not change because of the treatment) then the dose can be deduced to the time. The proposed reference temperature is 43oC.[71] (In the English literature this is called CEM43oC).
What is the situation in the case of other temperatures?[72] On the basis of experiments carried out on cell cultures  for the comparison with the constant temperature treatment performed on the reference temperature  the following dose function was proposed:[73]
where
This introduction is given from the experimental definitions. ( Invitro experiments: in the cell culture the same quantity of celldeath shall belong to the given temperature, the dose definition is equivalent.[72] As the base of the measurement is the time, therefore, it basically means the definition of the equivalent time). In this case, practically, the discontinuity kink of Arrheniusplot has been considered, which results from the different thermotolerance.
However, we have again three problems:
 the kink of the Arrheniusgraph depends on the applied chemotherapy;[74],[75]
 the kink of Arrheniusgraph depends on the prehistory and dynamics of treatment;[76],[77],[78],[79],[80]
 the Arrheniusgraph gives different time doses for the different points of the target (because of its nonhomogeneous structure).
These conditions could be considered as a "memory effect", because the stimulating force and the real change caused are not simultaneous but of course, are correlating. The solution of the problem is made difficult by the fact that we are not able to find two identical individuals, two identical tumors of the same structure and composition (the tumor is not a homogenous structure), two identical thermotolerances etc.
The clinical practice can not do anything with these problems. To solve at least the last point, a distribution characteristic had to be introduced instead of the spatial distribution of temperature. This is the temperature for which 90% of temperature values measured in the target is higher, namely, it is the socalled 10th percentile of the measured temperature. Its symbol is T_{ 90} .[81] This is a statistical characteristic which can be specified by using a lot of measuring points under the efficacy of 75% and empirical treatment dose. This is not an adequate matching. By this, we get the definition of CEM43oC T_{ 90} :
Together with its unsubstantial theory, unfortunately, this result correlates slightly with the clinical practice.[82] For the performed experiments the PCR (pathological complete response) has showed 75% correlation with the CEM43oC T_{ 90} in the case of highgrade soft tissue sarcomas treated with thermoradiotherapy.[82] Large discrepancies could be expected between the empirical dose and PCR in the cases, when the time of the memory effect is not negligible in comparison of the treatment time. To use the invivo systems, due to the systemic and other physiological effects this case, the inaccuracy of the empirical dose is unfortunately always valid. The empirical dosedependence was proven by the canine randomized trial only in low and high dose significance.[83] The redefinition of the thermal dose concept looks as a further step.[84]
We have theoretically deduced by very general conditions that the cell destruction reaction rate fulfils the Arrheniuslaw. In accordance with this, we are going to show that under certain conditions the SeparetoDewey empirical formula can be deduced from the Arrheniuslaw.
Let us start from the isothermal cell destruction of 43oC. Then, the number of destructed cells during t time will be as follows.
Let us take another isothermal treatment of temperature T and examine the section of the same slope of Arrheniusgraph. (Of course, it is quite complicated in the practice as the slope depends on the conditions of pretreatment.)[76] Let us suppose that for the same degree of cell destruction we need t_{ eq} time. As the process is isothermal, we might define the same death rate for the other temperature:[14]
From this we get that
The error of substitution of T temperature with the T_{ 43} absolute temperature corresponding to 43°C equals to ( T_{ 43}  T )/( T_{ 43} )[2]. As this is a very small value, the applied approximation is good. The approximation is not so good if we compare two treatments for which the slope of Arrheniusgraph is different (we should not forget that these invitro examinations have not got any invivo dynamics).
Let us derive the SeparetoDewey empirical formula from the thermodynamical dose.
Start with (39) and considering the Onsagerconstants from (26) we get:
This expression is formally corresponding with the equivalent treatment time derived from the empirical dose. So if the energy taken to the activation and distortion is neglected, the energy and empiricaldoses are identical and the parameters have to fulfil the following condition:
This means that the present nonequilibrium thermodynamics describes well the given processes. Also it seems that the present energy dose is more general, it can consider the memory effects of the actual processes and with this fits better to the reality.
It is interesting to observe the changes caused by the different factors (pH, low glucose level, thermotolerance):[14]
 The slope of the lower section of Arrheniusgraph (the section belonging to the higher temperature) will be approximately identical with the slope of the section belonging to the lower temperature.
 The A proportionality factor changes in the equation (44).
The slope of the lower section of Arrheniusgraph (the section belonging to the higher temperature) will be approximately identical with the slope of the section belonging to the lower temperature.
The A proportionality factor changes in the equation (44).
In accordance with the above deduction, both effects influence the accuracy of the empirical formula (41). E.g. in the case of thermotolerance only one constant will be lower in (42). Regarding the qualitative effect, the jump in the survival graph  which can be observed as a function of treatment time and shows significant deviations for the treatments of different temperatures [85] will lessen.
Additional problem is that in the case of hyperthermia treatment the target temperature is obtained from the solution of Pennesequation. In this case the temperature distribution is calculated numerically and from this we get the T_{ 90} temperature and the CEM43oC T_{ 90} dose. To verify the temperature the noninvasive MRI measurement is in use,[86],[87] for what presenting the physiological effects (e.g. blood perfusion, heattolerance, celldestruction, etc.) on the applied reference phantoms is problematic.
In consequence of the above, the form of the heatconduction equation (Pennes or Penneslikeequation) affects the definition and the definability of the adequate dose. The original Pennes equation does not describe the reality well, does not consider the energy (heat) consumed by the celldistortion processes. (This celldisruption however is the main goal of the entire process.) Due to the missing energy, the dose calculated from the Pennes equation is always higher than the reality. The difference between the temperatures calculated from the Pennes equation ( TP) and the temperature derived from our present work could be calculated by perturbation theory as a simples approach. This could be accurate in the case, when the energy intake by the celldisruption is much less than the overall energy absorption. (Of course this is not an optimal treatment, when most of the energy is not expended to the desired job, but this could be a good approximation of the reality in most of the treatment cases.) Stopping at the first term of the perturbation approximation, the deviation of the real and the Pennescalculated temperature is:
The difference between the results of the two approximations grows by the relative energy portion of the cellular distortion in the complete energyintake. If we have a definite high temperature (and the criteriais such a result) then of course we pump the energy much higher than the distortion requests, the temperature in fact only the "nondirectlyused" part of the energyintake. The distinguishing between the "heatable" and "unheatable" patients in reality is the condition that the energy expending to the distortion has to be negligible, ("heatablepatient") so the temperature could be the control parameter instead of the correct energy control.
> Conclusion   
Starting by the definition point of the hyperthermia, we considered the energy intake of the cellular distortion during the treatment. The present work proposes to consider the energy expended on the cellular destruction in the frame of the analogue reactionkinetics. On this base we worked out the nonequilibrium thermodynamic theory of the hyperthermia processes. Results of the above considerations are the generalized Pennes equation and two reactionequations (one for the activation and one for cellular destruction). Based on the generalized Pennes equitation, we introduced the energydose which contains a clinically observable term, the memory effect, namely the effect of the irreversible changes depending on the time, which is characteristically longer (or at least comparable) with the treatment time. We had shown that neglecting the distortion energy, (memory effect) the newly introduced energydose and the SeparetoDewey empiricaldose are identical. This is a control of the new dosecalculation and at the same time shows the reality of the rigorous thermodynamic basis of the empiricaldose as well. By studying the differences between the energy and empiricaldoses, we established that they are near to each other if the energy intake is large enough to neglect the energy of the distortion or the distortion process is so immediate that its time is negligible compared to the treatment time.
Considering the definitive task of hyperthermia to destroy the malignant cells, the celldisruption and the energy expended on this is mandatory in the process. In this regard, our present calculation is important to clarify the quality assurance and all the quality guidelines of oncological hyperthermia.
> References   
1.  Senior K. NASA and NCI join forces to work on biomolecular sensors. Lancet Oncol 2001;2:328. [PUBMED] [FULLTEXT] 
2.  Overgaard J. Effect of hyperthermia on malignant cells in vivo . A review and a hypothesis. Cancer 1977;39:263746. 
3.  Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, et al . Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperthermia 1996;12:320. 
4.  Kitamura K, Kuwano H, Watanabe M, Nozoe T, Yasuda M, Sumiyoshi K, et al . Prospective randomized study of hyperthermia combined with chemoradiotherapy for esophageal carcinoma. J Surg Oncol 1995;60:558. 
5.  Egawa S, Tsukiyama I, Watanabe S, Ohno Y, Morita K, Tominaga S, et al . A randomized clinical trial of hyperthermia and radiation versus radiation alone for superficially located cancers. J Jpn Soc Ther Radiol Oncol 1989;1:13540. 
6.  van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk JD, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumors: A prospective, randomized, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000;355:111925. 
7.  Emami B, Scott C, Perez CA, Asbell S, Swift P, Grigsby P, et al . Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors. A prospectively controlled randomized study by the Radiation Therapy Group. Int J Radiat Oncol Biol Phys 1996;34:1097104. 
8.  Issels R. Hyperthermia combined with chemotherapy  biological rationale, clinical application and treatment results. Onkologie 1999;22:37481. 
9.  Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al . Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3:48797. [PUBMED] [FULLTEXT] 
10.  Dewhirst MW, Sneed PK. Those in gene therapy should pay closer attention to lessons learnt from hyperthermia. Int J Radiat Oncol Biol Phys 2003;57:597600. 
11.  van der Zee J, Hulshof MC. Lessons learned from hyperthermia. Int J Radiat Oncol Biol Phys 2003;57:597600. [PUBMED] [FULLTEXT] 
12.  van der Zee J. Heating the patient: A promising approach? Ann Oncol 2002;13:113784. [PUBMED] [FULLTEXT] 
13.  Nielsen OS, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment? Eur J Cancer 2001;37:15879. 
14.  Dewhirst MW. Thermal dosimetry. In : Thermoradiotherapy and thermochemotherapy, vol.1. Biology, Physiology and Physics. Seegenschmiedt MH, Fessenden P, Vernon CC, editors. Springer Verlag: Berlin Heidelberg; 1995. p. 12336. 
15.  Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948;1:93122. 
16.  McRae DA, Esrick MA, Mueller SC. Noninvasive, invivo electrical impedance of EMT6 tumors during hyperthermia: Correlation with morphology and tumourgrowth delay. Int J Hyperthermia 1997;13:120. [PUBMED] 
17.  McRae DA, Esrick MA, Mueller SC. Changes in the noninvasive, in vivo electrical impedance of the xenograpfts during the necrotic cellresponse sequence. Int J Radiat Oncol Biol Phys 1999;43:84957. [PUBMED] [FULLTEXT] 
18.  Vaupel P, Kallinowski FP. Blood flow, oxygen and nutrient supply and microenvironment of human tumors: A review. Cancer Res 1989;49:644965. 
19.  Dudar TE, Jain RK. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 1984;44:60512. [PUBMED] [FULLTEXT] 
20.  Song CW, Lokshina A, Rhee JG, Patten M, Lewitt SH. Implication of bloodflow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 1984;31:916. 
21.  Song CW, Choi IB, Nah BS, Sahu SK, Osborn JL. Microvasculature and persfusion in normal tissues and tumors, thermoradiometry and thermochemotherapy. Seegenschmiedt MH, Fessenden P, Vernon CC, editors. 1995. p. 13956. 
22.  Wallach DF. Action of Hyperthermia and Ionizing radiation on plasma membranes. In : Cancer therapy by hyperthermia and radiation. Streffer C, vanBeuningen D, Dietzel F, Rottingen E, Robinson JE, Scherer E, Seeber S, Trott KR, editors. Urban and Schwarzenberg: Baltimore, Munich; 1978. p.1928. 
23.  Nishida T, Akagi K, Tanaka Y. Correlation between cell killing effect and cellmembrane potential after heat treatment: Analysis using fluorescent dye and flow cytometry. Int J Hyperthermia 1997;13:22734. [PUBMED] 
24.  Weiss TF. Cellular biophysics. Vol.1. Transport. MIT Press: Cambridge; 1996. 
25.  Dewhirst MW, Ozimek EJ, Gross J, Cetas TC. Will hyperthermia conquer the elusive hypoxic cell? Implications of heat effects on tumor and normaltissue microcirculation. Radiology 1980;137:8117. 
26.  Vaupel PW, Kelleher DK, Metabolic status and reaction to heat of Normal and tumor tissue, Seegenschmiedt MH, Fessenden P, Vernon CC, editors. Thermoradiotherapy and Thermochemiotherapy. Vol. 1. Biology, physiology and physics. Springer Verlag: Berlin Heidelberg; 1996. p. 15776. 
27.  Heilbrunn LV. The colloid chemistry of protoplasm. Am J Physiol 1924;69:1909. 
28.  Yatvin MB, Dennis WH. Membrane lipid composition and sensitivity to killing by hyperthermia, Procaine and Radiation. In : Cancer therapy by hyperthermia and radiation. Streffer C, vanBeuningen D, Dietzel F, Rottingen E, Robinson JE, Scherer E, Seeber S, Trott KR, editors. Urban and Schwarzenberg: Baltimore, Munich; 1978. p. 1579. 
29.  Streffer C. Biological Basis of Thermotherapy (with special reference to Oncology). In : Biological basis of oncologic thermotherapy. Gautherie M, editor. Springer Verlag: Berlin; 1990. p. 172. 
30.  Bowler K. Cellular heat injury: Are membranes involved? Symp Soc Exp Biol 1987;41:15785. [PUBMED] 
31.  Belehradek J. Physiological aspects of heat and cold. Am Rev Physiol 1957;19:5982. [PUBMED] 
32.  Weiss TF. Cellular biophysics. Vol.2. Electrical properties. MIT Press: Cambridge; 1996. 
33.  Mikkelsen RB, Verma SP, Wallach DF. Hyperthermia and the membrane potential of erythrocyte membranes as studied by Raman Spectroscopy. In : Cancer therapy by hyperthermia and radiation. Streffer C, vanBeuningen D, Dietzel F, Rottingen E, Robinson JE, Scherer E, Seeber S, Trott KR, editors. Urban and Schwarzenberg: Baltimore, Munich; 1978. p. 1602. 
34.  Hahn GM. The heatshock response: Effects before, during and after Gene activation. In : Biological basis of oncologic thermotherapy. Gautherie M, editor. Springer verlag: Berlin; 1990. p. 13559. 
35.  Hodgkin AL, Katz B. The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol 1949;108:3777. [PUBMED] [FULLTEXT] 
36.  Esrick MA, McRae DA. The effect of hyperthermia induced tissue conductivity changes on electrical, impedance temperature mapping. Phys Med Biol 1994;39:13344. [PUBMED] [FULLTEXT] 
37.  Miklavcic D, Pavselj N, Hart FX. Electric properties of tissues. Wiley Encyclopedia of Biomedical Engineering. John Wiley and Sons Inc: 2006. 
38.  Jorritsma JB, Burgman P, Kampinga HH, Konings AW. DNA polymerase activity in heat killing and hyperthermic radiosensation of mammalian cells as observed after fractioned heat treatments. Radiat Res 1986;105:30719. [PUBMED] 
39.  Keszler G, Csapo Z, Spasokoutskaja T, SasvarySzekely M, Virga S, Demeter A, et al . Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA. Adv Exp Med Biol 2000;486:337. 
40.  Dikomey E, Franzke J. Effect of heat on induction and repair of DNA strand breaks in Xirradiated CHO cells. Int J Radiat Biol 1992;61:22133. 
41.  Okumura Y, Ihara M, Shimasaki T, Takeshita S, Okaichi K. Heat inactivation of DNAdependent protein kinase: Possible mechanism of hyperthermic radiosensitization. thermotherapy for neoplasia, Inflammation and pain. Kosaka M, Sugahara T, Schmidt KL, Simon E, editor. Springer Verlag: Tokyo; 2001. p. 4203. 
42.  Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolorence and their relevance to clinical hyperthermia. Int J Hyperthermia 1995;11:45988. [PUBMED] 
43.  Soti C, Csermely P. Molecular chaperones in the etiology and therapy of cancer. Pathol Oncol 1998;4:31621. [PUBMED] [FULLTEXT] 
44.  Ferrarini M, Heltai S, Zocchi MR, Rugarli C. Unusual expression and localization of heat shock proteins in human tumor cells. Int J Cancer 1992;51:6139. [PUBMED] 
45.  Protti MP, Heltai S, Bellone M, Ferrarini M, Manfredi AA, Rugarli C. Constitutive expression of the heat shock protein 72kDa in human melanoma cells. Cancer Lett 1994;85:2116. [PUBMED] 
46.  Gress TM, MullerPillasch F, Weber C, Lerch MM, Friess H, Buchler M, et al . Differenctial expression of heat shock proteins in pancreatic carcinoma. Cancer Res 1994;54:54751. [PUBMED] [FULLTEXT] 
47.  Punyiczki M, Fesus L. Heat shock and apoptosis: The two defense systems of the organisms may have overlapping molecular elements. Ann NY Acad Sci 1998;851:6774. [PUBMED] [FULLTEXT] 
48.  Huot J, Roy G, Lambert H, Landry J. Coinduction of HSP27 phosphorylation and drug resistance in Chinese hamster cells. Int J Oncol 1992;1:316. 
49.  Goodman R, Blank M. The induction of stress proteins for cytoprotection in clinical applications, First International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, ElectroMed'99. Symposium Record Abstracts. Norfolk VA, USA; 1999. p. 57. 
50.  dePomerai, D, Dawe AS, Smith B, Worthington J. Nonthermal biological effects of microwave fields on Caenorbhabditis Elegans, Proceedings of the 2nd International Workshop on the Biological Effects of EMFs. Kostarakis P, editor. 2002. p. 394403. 
51.  Sapozhnikov AM, Ponomarev ED, Tarashenko TN, Telford WG. Spontaneous apoptosis and expression of cellsurface hetshock proteins in cultured EL4 lymphoma cells. Cell Prolif 1999;32:36378. 
52.  Hupp TR, Meek DW, Midgley CA, Lane DP. Regulation of the specific DNA binding function of p53. Cell 1992;71:87586. [PUBMED] [FULLTEXT] 
53.  Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH. A new member of the HSP90 Family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 1996;16:46919. 
54.  Liu J. Temperature monitoring and heating optimization in cancer hyperthermia. Prog Nat Sci 2000;10:10. 
55.  Deng ZS, Liu J. Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. Transactions of the ASME, Vol. 124, December 2002. 
56.  Wren J, Karlsson M, Loyd D. A hybrid equation for simulation of perfused tissue during thermal treatment. Int J Hyp 2001;17:48398. [PUBMED] 
57.  Davalos RV, Rubinsky B, Mir LM. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 2003;61:99107. [PUBMED] [FULLTEXT] 
58.  Bagaria HG, Johnson DT. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. Int J Hyp 2005;21:5775. [PUBMED] [FULLTEXT] 
59.  Gao B, Langer S, Corry PM. Application of the timedependent Green's function and Fourier transforms to the solution of the bioheat equation. Int J Hyp 1995;11:26785. [PUBMED] 
60.  Wissler EH. Pennes' 1948 paper revisited. J Appl Physiol 1998;85:3541. 
61.  Nelson DA. Invited editorial on Pennes' 1948 paper revisited. J Appl Physiol 1998;85:23. 
62.  Charny CK, Weinbaum S, Levin RL. An evaluation of the WeinbaumJiji equation for normal and hyperthermic conditions. J Biomech Eng 1990;112:807. 
63.  Najarian S, Pashaee A. Improvement of the Pennes Equation in the analysis of heat transfer phenomenon in blood perfused tissues. Biomed Sci Instrum 2001;37:18590. 
64.  Katchalsky A, Curran PF. Nonequilibrium thermodinamics in biophysics. Harvard University Press Cambridge: Massachusetts; 1967. 
65.  Anderson DA, Tannehill JC, Pletcher RH. Computational fluid mechanics and heat transfer. McGrawHill: Washington; 1984. 
66.  Lupis CH. Chemical thermodynamics of materials. Elsevier Science Publishing Co Inc: 1983. 
67.  Pilling MJ, Seakins PW. Reaction Kinetics, Oxford Science Publications. Oxford University Press: OxfordNewYorkTokyo; 1995. 
68.  Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 1994;10:45783. 
69.  Lindholm CE. Hyperthermia and radiotherapy. Ph.D. Thesis, Lund University: Malmo, Sweden; 1992. 
70.  Hafstrom L, Rudenstam CM, Blomquist E, Ingvar C, Jonsson PE, Lagerlof B, et al . Regional hyperthermic perfusion with melphalan after surgery for recurrent malignant melanoma of the extremities. J Clin Oncol 1991;9:20914. 
71.  Perez CA, Sapareto SA. Thermal dose expression in clinical hyperthermia and correlation with tumor response/control. Cancer Research 1984;44:4818s25s. 
72.  Separeto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Oncol Biol Phys 1984;10:787800. 
73.  Thrall DE, Rosner GL, Azuma C, Larue SM, Case BC, Samulsky T, et al . Using units of CEM43oC T90 local hyperthermia thermal dose can be delivered as prescribed. Int J Hyperthermia 2000;16:41528. 
74.  Urano M. Thermochemotherapy: From in vitro and in vivo experiments to potential clinical application. In : Hyperthermia and oncology. Urano M, Douple E, editors. VSP UtrechtTokyo; 1994. p. 169204. 
75.  Bhowmick P, Coad JE, Bhowmick S, Pryor JL, Larson T, De La Rosette J, et al. In vitro assessment of the efficacy of thermal therapy in human benign prostatic hyperplasia. Int J Hyperthermia 2004;20:42139. 
76.  Lindegaard JC. Winner of the Lund Science Award 1992. Thermosensitization induced by stepdown heating. A review on heatinduced sensitization to hyperthermia alone or hyperthermia combined with radiation. Int J Hyperthermia 1992;8:56186. 
77.  Hasegawa T, Gu YH, Takahashi T, Hasegawa T, Yamamoto I. Enhancement of hyperthermic effects using rapid heating. In : Thermotherapy for neoplasia, inflammation and pain. Kosaka M, Sugahara T, Schmidt KL, Simon E, editors. Springer Verlag: TokyoBerlin; 2001. p. 43944. 
78.  van Rijn J, van den Berg J, Wiegant FA, van Wijk R. Timetemperature relationships for stepdown heating in normal and thermotolerant cells. Int J Hyperthermia 1994;10:64352. 
79.  Henle KJ, RotiRoti JL. Response of cultured mammalian cells to hyperthermia, in Hyperthermia and Oncology. Urano M, Douple E, editors. Vol.1. VSP, Utrecht: Tokyo; 1988. p. 5782. 
80.  Konings AW. Interaction of heat and Radiation in vitro and in vivo . In : Thermoradiotherapy and thermochemotherapy, vol.1. Biology, Physiology and Physics. Seegenschmiedt MH, Fessenden P, Vernon CC, editors. Springer Verlag: Berlin Heidelberg; 1995. p. 89102. 
81.  Leophold KA. Dewhirst MW, Samulsky TV, Dodge RK, Georg SL, Blivin JL, et al . Cumulative minutes with T90 greater than Tempindex is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Phys 1993;25:8417. 
82.  Maguire PD, Samulski TV, Prosnitz LR, Jones EL, Rosner GL, Powers B, et al . A phase II trial testing the thermal dose parameter CEM43° T90 as a predictor of response in soft tissue sarcomas treated with preoperative thermoradiotherapy. Int J Hyperther 2001;17:28390. 
83.  Thrall DE, LaRue SM, Yu D, Samulski T, Sanders L, Case B, et al . Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin Cancer Res 2005;11:520614. 
84.  Dewhirst MW, Vujaskovic Z, Jones E, Thrall D. Resetting the biologic rationale fro thermal therapy. Int J Hyperthermia 2005;21:77990. 
85.  Field SB. Biological aspects of hyperthermia. In : Physics and technology of hyperthermia. Field SB, Franconi C, editors. NATO ASI Series, Martimus Nijhoff Publishers: Dordrecht, Boston; 1987. p. 1953. 
86.  Delannoy J, LeBihan D, Hoult DI, Levin RL. Hyperthermia system combined with a magnetic resonance imaging unit. Med Phys 1990;17:85560. 
87.  van Rhoon GC, Wust P. Introduction: Noninvasive thermometry for thermotherapy. Int J Hyperthermia 2005;21:48995. 
This article has been cited by  1 
Analytical study on optimization problem in hyperthermia by controlling heating probe at tumour and surface cooling temperature 

 Dhar, P. and Dhar, R. and Dhar, R.   Applied Mathematical Sciences. 2012; 6(912): 533543   [Pubmed]   2 
Preliminary evaluation of a 99mTc labeled hybrid nanoparticle bearing a cobalt ferrite core: In vivo biodistribution 

 Psimadas, D. and Baldi, G. and Ravagli, C. and Bouziotis, P. and Xanthopoulos, S. and Franchini, M.C. and Georgoulias, P. and Loudos, G.   Journal of Biomedical Nanotechnology. 2012; 8(4): 575585   [Pubmed]   3 
Indirect heating strategy for laser induced hyperthermia: An advanced thermal model 

 Dombrovsky, L.A. and Timchenko, V. and Jackson, M.   International Journal of Heat and Mass Transfer. 2012; 55(1718): 46884700   [Pubmed]   4 
Mathematical cancer therapy planning in deep regional hyperthermia 

 Deuflhard, P. and Schiela, A. and Weiser, M.   Acta Numerica. 2012; 21: 307378   [Pubmed]   5 
Indirect heating strategy for laser induced hyperthermia: An advanced thermal model 

 Leonid A. Dombrovsky,Victoria Timchenko,Michael Jackson   International Journal of Heat and Mass Transfer. 2012; 55(1718): 4688   [Pubmed]   6 
A ThreeState Mathematical Model of Hyperthermic Cell Death 

 David P. O’Neill, Tingying Peng, Philipp Stiegler, Ursula Mayrhauser, Sonja Koestenbauer, Karlheinz Tscheliessnigg, Stephen J. Payne   Annals of Biomedical Engineering. 2011; 39(1): 570   [VIEW]   7 
Imagebased multiscale modelling and validation of radiofrequency ablation in liver tumours 

 Payne, S. and Flanagan, R. and Pollari, M. and Alhonnoro, T. and Bost, C. and OæNeill, D. and Peng, T. and Stiegler, P.   Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2011; 369(1954): 42334254   [Pubmed]   8 
Mathematical modeling of thermal ablation 

 Payne, S.J., Peng, T., OæNeill, D.P.   Critical Reviews in Biomedical Engineering. 2010; 38(1): 2130   [Pubmed]   9 
Transcranial electrohyperthermia combined with alkylating chemotherapy in patients with relapsed highgrade gliomas: phase I clinical results 

   Journal of NeuroOncology. 2010; 98(3): 395   [VIEW]   10 
Strong synergy of heat and modulated electromagnetic field in tumor cell killing 

 Gabor Andocs,Helmut Renner,Lajos Balogh,Laszlo Fonyad,Csaba Jakab,Andras Szasz   Strahlentherapie und Onkologie. 2009; 185(2): 120   [Pubmed]   11 
Strong synergy of heat and modulated electromagnetic field in tumor cell killing  [Ausgeprägte Synergie zwischen Hyperthermie und moduliertem elektromagnetischem Feld bei der Abtötung von Tumorzellen] 

 Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C., Szasz, A.   Strahlentherapie und Onkologie. 2009; 185(2): 120126   [Pubmed]   12 
Multiscale analysis in dynamical heat transfer problems in biological tissues 

 Timofte, C.   Romanian Reports on Physics. 2009; 61(2): 269279   [Pubmed]   13 
Oncothermia treatment of cancer: From the laboratory to clinic 

 Andocs, G., Szasz, O., Szasz, A.   Electromagnetic Biology and Medicine. 2009; 28(2): 148165   [Pubmed]   14 
Optimization of laser heating with the treatment of spontaneous tumors of domestic animals by the use of the thermography 

 Terentyuk, G.S., Akchurin, G.G., Maksimova, I.L., Maslyakova, G.N., Suleymanova, L.V., Tuchin, V.V.   Progress in Biomedical Optics and Imaging  Proceedings of SPIE. 2008; 6791(Art 67910Q)   [Pubmed]   15 
Upscaling in dynamical heat transfer problems in biological tissues 

 Timofte, C.   Acta Physica Polonica B. 2008; 39(11): 28112822   [Pubmed]  





